(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Ok, I am evaluating the following integral,

[tex]

{{\int_{0}^{\infty}}{\frac{{R_{0}}ds}{\left({{s}^{2}+{R_{0}}^{2}\right)^{\frac{3}{2}}}}}

[/tex]

Following through with trigonometric substitution I have the following,

[tex]

{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{s}{(s^2+{R_{0}}^2)^{\frac{1}{2}}}}\right]_{0}^{\infty}}}

[/tex]

However, I am not quite sure what the result will be when I evaluate the integral.

2. Relevant equations

Trigonometric Substitution Techniques for evaluating Integrals.

3. The attempt at a solution

[tex]

{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(\infty)}{({(\infty)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]-{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(0)}{({(0)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]

[/tex]

[tex]

{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(\infty)}{({(\infty)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]-{\left[0\right]}\right]

[/tex]

However, how I am supposed to reduce the expression with the value of infinity plugged in, how would I reduce that expression?

Any help is appreciated.

Thanks,

-PFStudent

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Difficult Integral: Evaluating the Limits

**Physics Forums | Science Articles, Homework Help, Discussion**