- #1

- 170

- 0

## Homework Statement

Ok, I am evaluating the following integral,

[tex]

{{\int_{0}^{\infty}}{\frac{{R_{0}}ds}{\left({{s}^{2}+{R_{0}}^{2}\right)^{\frac{3}{2}}}}}

[/tex]

Following through with trigonometric substitution I have the following,

[tex]

{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{s}{(s^2+{R_{0}}^2)^{\frac{1}{2}}}}\right]_{0}^{\infty}}}

[/tex]

However, I am not quite sure what the result will be when I evaluate the integral.

## Homework Equations

Trigonometric Substitution Techniques for evaluating Integrals.

## The Attempt at a Solution

[tex]

{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(\infty)}{({(\infty)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]-{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(0)}{({(0)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]

[/tex]

[tex]

{\left[{{{\frac{1}{R_{0}}}{\cdot}{\frac{(\infty)}{({(\infty)}^2+{R_{0}}^2)^{\frac{1}{2}}}}}\right]-{\left[0\right]}\right]

[/tex]

However, how I am supposed to reduce the expression with the value of infinity plugged in, how would I reduce that expression?

Any help is appreciated.

Thanks,

-PFStudent

Last edited: