Dimension of a Linear Transformation Matrix

Click For Summary
SUMMARY

The discussion centers on the matrix representation of a linear transformation defined by the mapping ##\phi: M_{2}(R) \to M_{2}(R)##, where ##\phi(A) = \mu_{2*2} * A_{2*2}## and ##\mu = \begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}##. The correct representation of this transformation is a 4x4 matrix, as the dimension of the vector space ##M_{2}(R)## is 4. The transformation is confirmed to be represented by a matrix of size 4x4, aligning with the dimensions of the vector spaces involved.

PREREQUISITES
  • Understanding of linear transformations and their matrix representations
  • Familiarity with the concept of vector spaces, specifically ##M_{2}(R)##
  • Knowledge of matrix multiplication and its implications in linear algebra
  • Basic understanding of basis vectors in the context of linear transformations
NEXT STEPS
  • Study the properties of linear transformations in vector spaces
  • Learn about the basis of matrix spaces, specifically for ##M_{2}(R)##
  • Explore the application of matrix multiplication in linear transformations
  • Investigate the implications of dimensionality in linear algebra, particularly in relation to transformations
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on linear algebra, matrix theory, and anyone involved in the study of linear transformations and their applications in various fields.

patric44
Messages
308
Reaction score
40
TL;DR
does the matrix of the linear transformation should have the same dimension of the vector space?
hi guys
I was trying to find the matrix of the following linear transformation with respect to the standard basis, which is defined as
##\phi\;M_{2}(R) \;to\;M_{2}(R)\;; \phi(A)=\mu_{2*2}*A_{2*2}## ,
where ##\mu = (1 -1;-2 2)##
and i found the matrix that corresponds to this linear transformation this 4*4 matrix , given by
$$\phi =(1\;0\;-2\;0;0\;1\;0-2;-1\;0\;2\;0;0 -1\;0\;2) $$
is there is some wrong here or the matrix should be 4*4
 
Physics news on Phys.org
patric44 said:
Summary:: does the matrix of the linear transformation should have the same dimension of the vector space?

hi guys
I was trying to find the matrix of the following linear transformation with respect to the standard basis, which is defined as
##\phi\;M_{2}(R) \;to\;M_{2}(R)\;; \phi(A)=\mu_{2*2}*A_{2*2}## ,
where ##\mu = (1 -1;-2 2)##
and i found the matrix that corresponds to this linear transformation this 4*4 matrix , given by
$$\phi =(1\;0\;-2\;0;0\;1\;0-2;-1\;0\;2\;0;0 -1\;0\;2) $$
is there is some wrong here or the matrix should be 4*4
The matrix should be 4 x 4, since your transformation is a map from ##M_2## to itself. ##M_2##, the space of 2 x 2 matrices, is of dimension 4, and any basis for this space will need to have 4 elements.
 
  • Like
Likes   Reactions: patric44
A linear transformation ##\Phi: V\longrightarrow W## of finite-dimensional vector spaces, say ##\dim V = n## and ##\dim W = m## has a matrix representation as an ##m \times n## matrix, ##n## columns and ##m## rows.

We have here ##V=W=\mathbb{R}^2,## the vector space of linear functions ##\varphi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2##. Since ##\dim \mathbb{R}^2 = 2##, the dimension of ##\mathbb{M}_2(\mathbb{R})## is ##2\cdot 2= 4.##

In case ##V=W=\mathbb{M}_2(\mathbb{R})## we get ##\dim V = \dim W=\dim \mathbb{M}_2(\mathbb{R})=4,## we have ##\dim \mathbb{M}_4(\mathbb{R})=4\cdot 4=16## and ##\Phi## is represented by a ##4 \times 4## matrix.
 
  • Like
Likes   Reactions: patric44
thanks guys i think i got it now, but i still have a question : how iam going to act with a 4*4 matrix on matrices that belong to ##M_{2}(R)## space
 
If you use them as a linear transformation of ##\mathbb{R}^2## then you simply consider the ##2\times 2## matrix.

If you want to deal with all those linear transformations and deal with ##\mathbb{M}_2(\mathbb{R})## as vector space instead, then you have to choose some ordered basis to make those matrices a linear vector. E.g. if ##e_{ij}## is the matrix with ##1## in the ## i ##-th row and ##j##-th column, and zeros otherwise, then ##(e_{11},e_{12},e_{21},e_{22})## would be such a bases.

A ##2 \times 2## matrix would be
##\begin{bmatrix}
2&3\\4&5
\end{bmatrix}=2e_{11}+3e_{12}+4e_{21}+5e_{22}=(2,3,4,5)##

A linear transformation between those, e.g. ##M_{\Phi}=\begin{bmatrix}
2&3&0&1\\0&0&0&5\\0&0&1&4\\0&0&0&0
\end{bmatrix}##
would map
\begin{align*}
e_{11}&\longmapsto 2e_{11}+3e_{12}+1e_{22}\\
e_{12}&\longmapsto 5e_{22}\\
e_{21}&\longmapsto 1e_{21}+4e_{22}\\
e_{22}&\longmapsto 0
\end{align*}Edit: This interpretation corresponds to ##\vec{v} \longmapsto \vec{v}\cdot M_{\Phi}##. If we choose matrix multiplication from the left, i.e. ##\vec{v} \longmapsto M_{\Phi}\cdot \vec{v}## then
\begin{align*}
e_{11}&\longmapsto 2e_{11}\\
e_{12}&\longmapsto 3e_{11}\\
e_{21}&\longmapsto 1e_{21}\\
e_{22}&\longmapsto 1e_{11}+5e_{12}+4e_{21}
\end{align*}
 
Last edited:
  • Informative
Likes   Reactions: patric44

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K