kostoglotov
- 231
- 6
I think it's 3...
All 2x2 can be written as
a_1 A_1 + a_2 A_2 + a_3 A_3 + a_4 A_4
with
A_1 =<br /> \begin{bmatrix}<br /> 1 & 0 \\<br /> 0 & 0<br /> \end{bmatrix}<br />, A_2 =<br /> \begin{bmatrix}<br /> 0 & 1 \\<br /> 0 & 0<br /> \end{bmatrix}<br />, A_3 =<br /> \begin{bmatrix}<br /> 0 & 0 \\<br /> 1 & 0<br /> \end{bmatrix}<br />, A_4 =<br /> \begin{bmatrix}<br /> 0 & 0 \\<br /> 0 & 1<br /> \end{bmatrix}<br />
And 2x2 Symm = a_1 A1 + a_2 (A_2 + A_3) + a_4 A_4, and if we combine A_2 + A_3 into a single basis element A^*, then A^* is still independent of A_1 and A_4...so actually all 2x2 symm matrices should be in a space of dimension 3...and the basis elements are A_1 \ A_2 \ and \ A^*?
All 2x2 can be written as
a_1 A_1 + a_2 A_2 + a_3 A_3 + a_4 A_4
with
A_1 =<br /> \begin{bmatrix}<br /> 1 & 0 \\<br /> 0 & 0<br /> \end{bmatrix}<br />, A_2 =<br /> \begin{bmatrix}<br /> 0 & 1 \\<br /> 0 & 0<br /> \end{bmatrix}<br />, A_3 =<br /> \begin{bmatrix}<br /> 0 & 0 \\<br /> 1 & 0<br /> \end{bmatrix}<br />, A_4 =<br /> \begin{bmatrix}<br /> 0 & 0 \\<br /> 0 & 1<br /> \end{bmatrix}<br />
And 2x2 Symm = a_1 A1 + a_2 (A_2 + A_3) + a_4 A_4, and if we combine A_2 + A_3 into a single basis element A^*, then A^* is still independent of A_1 and A_4...so actually all 2x2 symm matrices should be in a space of dimension 3...and the basis elements are A_1 \ A_2 \ and \ A^*?