- 379
- 238
Homework Statement
There is a paper in 1973:
T. Kushida, "Energy Transfer and Cooperative Optical Transitions in Rare-Earth Doped Inorganic Materials I. Transition Probability Calculation", J. Phys. Soc. Jpn. 1973, 34, 1318-1326. DOI: http://dx.doi.org/10.1143/JPSJ.34.1318
that explains the multipole-multipole energy transfer probability.
I need help with dimensional analysis of the following equation in this paper that looks EXACTLY like this:
\bar{P}_{AB}^{(dd)} = \frac{1}{(2J_{a}+1)(2J_{b}+1)}\left ( \frac{2}{3} \right )\left ( \frac{2\pi }{\hbar} \right )\left ( \frac{e^{2}}{R^{3}} \right )^{2}\left [ \sum_{\lambda }^{ } \Omega _{A\lambda }\left \langle J_{a}\left \| U^{(\lambda )} \right \| J_{a}' \right \rangle^{2}\right ]\left [ \sum_{\lambda }^{ } \Omega _{B\lambda }\left \langle J_{b}\left \| U^{(\lambda )} \right \| J_{b}' \right \rangle^{2}\right ]S
here,
\bar{P}_{AB}^{(dd)}: Dipole-dipole energy transfer probability. Unit: [s^{-1}]
J_{a}: Total angular momentum quantum number at state a of specie A. No unit.
J_{b}: Total angular momentum quantum number at state b of specie B. No unit.
\hbar: Reduced Planck constant. Unit: [J s]
e: Elementary charge. Unit: [C]
R: Distance between specie A and B. Unit: [m]
\Omega _{A\lambda }: Scaling parameter for specie A. \lambda denotes tensor rank. Unit: [m^{2}]
\left \langle J_{a}\left \| U^{(\lambda )} \right \| J_{a}' \right \rangle: Reduced matrix element of J_{a}\rightarrow J_{a}' transition of specie A. \lambda denotes tensor rank. Unit: [-]
\Omega _{B\lambda }: Scaling parameter for specie B. \lambda denotes tensor rank. Unit: [m^{2}]
\left \langle J_{b}\left \| U^{(\lambda )} \right \| J_{b}' \right \rangle: Reduced matrix element of J_{b}\rightarrow J_{b}' transition of specie B. \lambda denotes tensor rank. Unit: [-]
S: Spectral overlap integral of A and B. Unit: [m]
After dimensional analysis of the right side of the equation, it did not match with the unit on the left side of the equation.
Homework Equations
Dimensional analysis:
\frac{1}{J\cdot s} \cdot \left ( \frac{C^{2}}{m^{3}} \right )^{2}\cdot m^{2}\cdot m^{2}\cdot m
The Attempt at a Solution
\frac{1}{J\cdot s} \cdot \left ( \frac{C^{2}}{m^{3}} \right )^{2}\cdot m^{2}\cdot m^{2}\cdot m
= \frac{C^{4}}{J\cdot s\cdot m}
= \frac{A^{4}\cdot s^{4}}{kg\cdot m^{2}\cdot s^{-2}\cdot s\cdot m}
= \frac{A^{4}\cdot s^{5}}{kg\cdot m^{3}}
I broke them all down into SI units, but I have no idea how this is going to be s^{-1}. I think I am making a careless or fundamental mistake here, but I just can't figure it out. What do you guys think?
Thank you