Dimensional analysis-how one variable scales w/ another

Click For Summary
Dimensional analysis was applied to determine the relationship between the thickness h of a thin fluid film and the variables flow rate Q, viscosity µ, density ρ, gravitational acceleration g, and incline angle θ. The dimensionless groups derived include Π1 = Qρ/μ, Π2 = (h^3)g/(Q^2), and Π3 = θ, leading to the relationship Π2 = f(Π1, Π3). To address the effect of doubling flow rate Q on thickness h, it was noted that h increases by a factor of 2^(1/3). However, accurately disentangling the Π groups to confirm this requires additional assumptions.
funandgames97
Messages
1
Reaction score
0

Homework Statement



In PSet 3, Prob. 1(e), you determined the thickness h of a thin film of fluid (of viscosity µ and density ρ) flowing down an incline of angle θ, driven by gravity (acceleration g), via a supplied upstream flow rate Q per unit width (i.e., [Q] = (length)2/time).

(a) Using only dimensional analysis, obtain a possible dimensionless version of the relationship h = f(Q, µ, ρ, g, θ) for some arbitrary function f.

(b) From your result in (a), can you answer the question “If you double the flow rate Q, what happens to the thickness h?”

Homework Equations



The Attempt at a Solution



Using dimensional analysis on these variables, I obtained the following dimensionless groups:
Π1 = Qρ/μ
Π2 = (h^3)g/(Q^2)
Π3 = θ

Applying Buckingham Π theorem:
Π2 = f(Π1, Π3)
(h^3)g/(Q^2) = f(Qρ/μ, θ)

However, to answer part (b), I believe I would need to manipulate the Π groups that the function f depends on such that none includes either Q or h, while the Π2 outside the function should include both (which it does). I know the answer should be that when Q doubles, h increases by a factor of 2^(1/3), but I cannot figure out how to disentangle the Π groups. Thanks!
 
Physics news on Phys.org
If you multiply your equation by ##\Pi 1##, you get $$\frac{\rho gh^3}{\mu Q}=g(Q\rho/\mu, \theta)$$
This is about the best you can do. Part (b) can't be answered without making additional assumptions.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 1 ·
Replies
1
Views
952
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K