(adsbygoogle = window.adsbygoogle || []).push({}); [SOLVED] Dimensionality, Rangespace & Nullspace Problem

The problem statement, all variables and given/known data

Prove (where A is an n x n matrix and so defines a transformation of any n-dimensional space V with respect to B, B where B is a basis of V) that [itex]\dim(R(A) \cap N(A)) = \dim R(A) - \dim R(A^2)[/itex]

The attempt at a solution

If I determine the basis of [itex]R(A) \cap N(A)[/itex], I can determine its dimensionality and then compare it with [itex]\dim R(A) - \dim R(A^2)[/itex].

I've been unsuccessful at finding a basis. Also, given that [itex]\dim R(A) = m[/itex], is there a way to determine what [itex]\dim R(A^2)[/itex] is?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Dimensionality, Rangespace & Nullspace Problem

**Physics Forums | Science Articles, Homework Help, Discussion**