I Dirac delta function in 2d polar coordinates

Trollfaz
Messages
143
Reaction score
14
In 3 d spherical coordinates we know that
$$\triangledown \cdot \frac{\hat{\textbf{r}}}{r^2}=4π\delta^3(\textbf{r})$$
Integration over all## R^3## is 4π
So when we remove the third dimensions and enter 2d polar coordinates then
$$\triangledown \cdot \frac{\hat{\textbf{r}}}{r}=2π\delta^2(\textbf{r})$$
So the integral over ##R^2## is 2π?
 
Physics news on Phys.org
First of all, note that your expressions are not written in any particular coordinates (apart from the interpretation of ##r## as a coordinate function and ##\hat{\boldsymbol r}## as the corresponding unit vector. In particular, the delta functions are not the product of the coordinate delta functions.

Apart from that: Yes. You can easily check the result by use of the divergence theorem and integration over a sphere/circle. In fact, that is one way to find the constant factors in front.
 
I'm quoting the first expression from Introductions to Electrodynamics (David J. Griffiths) Section 1.5.3, Eqn 1.99
$$\triangle \cdot \frac{\hat{r}}{r^2}=4π\delta^3(r)$$
 
Trollfaz said:
I'm quoting the first expression from Introductions to Electrodynamics (David J. Griffiths) Section 1.5.3, Eqn 1.99
$$\triangle \cdot \frac{\hat{r}}{r^2}=4π\delta^3(r)$$
You are missing the point (and hopefully misquoting Griffiths as the expression as written here makes no sense). The expression in your OP was correct. My comment was that it was not really something dependent on using spherical coordinates.
 
right, integral in ##R^3-B_\epsilon(0)##, and use divergence thm

if your are curious about the equation everypoint (specially point 0), that is Dirac delta, try to understand it as a functional like ##<\delta, \varphi>##, that is ## \int \limits_{R^3} \delta \varphi ##
 
I'm a bit confused by the conditions on the existence of coordinate basis given by Frobenius's theorem. Namely, let's take a n-dimensional smooth manifold and a set of n smooth vector fields defined on it. Suppose they are pointwise linearly independent and do commute each other (i.e. zero commutator/Lie bracket). That means they span the entire tangent space at any point and since commute, they define a local coordinate basis. What does this mean? Well, starting from any point on the...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
Replies
1
Views
455