Dirac delta function of a function of several variables

Click For Summary
The discussion focuses on the application of the Dirac delta function in the context of solid state physics and the integration of functions of several variables. It explores the transition from summation over k-space to integration as the volume approaches infinity, emphasizing the role of the delta function in evaluating integrals involving energy constraints. The participants discuss the challenges of integrating a complex function involving spherical coordinates and the delta function, with one user suggesting a numerical approach for the final integral due to its complexity. The conversation highlights the importance of approximations and potential simplifications when dealing with intricate integrals in theoretical physics. Overall, the approach taken appears sound, though the final integral may require numerical methods for resolution.
amjad-sh
Messages
240
Reaction score
13
Homework Statement
In fact, I'm working on deriving the equations included in a theoretical condensed matter physics paper.
I reached the part where the normal charge current density is represented by $$J_y^N(z<0)=-\sum_{\mathbf{p},k}2i\dfrac{e}{m}p_yr_xsin(2k_z)\delta(\varepsilon_{p,k}-E_f)\triangle\mu_L^x$$ and we need to prove that it is equal to ##\dfrac{-ek_f^2s}{(2\pi^2)}g(\nu,2k_fz)\triangle\mu_L^x##
It is not important to know what is normal charge current density, or other physical definitions I may mention Later in the post. Because I think knowing them will not serve in solving the problem.
Relevant Equations
##g(\nu,2k_fz)## is a function.

We assume that ##\hbar=1## where ##\hbar## is the planck constant

##\varepsilon_{\mathbf{p},k}=\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}## is the energy corresponding to one particle and ##k_x##,##k_y## and ##k_z## are the momentum in x,y and z directions respectively.

##E_f=\dfrac{k_f^2}{2m}=##constant.

##\sum_{\mathbf p,k}##is the summation over all k's in the k-space.

##r_x=\dfrac{Ak_yk_z}{k_z+\sqrt{k_z^2-2mV})^2+c}##

##p_y=K_y##

##\delta(x)## is the dirac delta function.
Form solid state physics, we know that the volume of k-space per allowed k-value is ##\triangle{\mathbf{k}}=\dfrac{8\pi^3}{V}##
##\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{V}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
##\dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k})=\dfrac{1}{(2\pi)^3}\sum_{\mathbf{k}}F(\mathbf{k})\triangle{\mathbf{k}}##
When V##\rightarrow \infty \dfrac{1}{V}\sum_{\mathbf{k}}F(\mathbf{k}) \rightarrow \dfrac{1}{(2\pi)^3}\int F(\mathbf{k}) \, d\mathbf{k}##

Now ##-\sum_{\mathbf{p},k}\dfrac{2ie}{m}p_yr_xsin(2k_z)\delta(\varepsilon_{p,k}-E_f)\triangle{\mu_L^x} \rightarrow -\dfrac{1}{(2\pi)^3}\int F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z##
Where ##F(k_x,k_y,k_z)=\dfrac{2ie}{m}k_y\Bigg (\dfrac{2is\nu^2k_yk_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)##
##\delta(\varepsilon_{p,k}-E_k)=\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})##
then$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} F(k_x,k_y,k_x)\delta(\varepsilon_{p,k}-E_f)dk_xdk_ydk_z=$$
$$-\dfrac{1}{(2\pi)^3}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\dfrac{2ie}{m}k_y^2\Bigg (\dfrac{2is\nu^2k_z}{(k_z+\sqrt{k_z^2-2mv})^2+c}\Bigg )sin(2k_zz)\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})\, dk_xdk_ydk_z$$

What is stopping me of completing the derivation is that how we can use ##\delta(\dfrac{k_x^2}{2m}+\dfrac{k_y^2}{2m}+\dfrac{k_z^2}{2m}-\dfrac{k_f^2}{2m})## to solve the integral?
I searched a lot in google to find an identity regarding this type of Dirac delta function, but I couldn't find anything.
 
Physics news on Phys.org
I think similar functions occur when looking at covariant electrodynamics (e.g. Jackson). In general , assume ##f## is a 'nice' function, and so is ##h##. Let function ##h## go to zero at ##x_0##, and let ##\frac{dh}{dx}_{x=x0}=h'_0\neq 0##

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=f\left(x_0\right) \int^{\epsilon}_{-\epsilon} \delta\left(h'_0 x\right)dx=f\left(x_0\right) \int^{h'_0\left(\epsilon\right)}_{h'_0\left(-\epsilon\right)} \delta\left(y\right)\frac{dy}{h'_0}=\frac{f\left(x_0\right)}{h'_0}##

Now let the first derivative vanish too, but keep the second one, i.e. ##h\left(x\approx x_0\right)=\frac{h''_0}{2}\left(x-x_0\right)^2##. This time the integral will only converge if ##f\left(x\approx x_0\right)=g\left(x\right)\left(x-x_0\right)##

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=\int^{\epsilon+x_0}_{-\epsilon+x_0} dx f\left(x\right) \delta\left(\frac{h''_0}{2}\left(x-x_0\right)^2\right)=\int^{\epsilon+x_0}_{-\epsilon+x_0} dx g\left(x\right)\left(x-x_0\right) \delta\left(\frac{h''_0}{2}\left(x-x_0\right)^2\right)##

Tidy up and change integration variable

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=g\left(x_0\right)\,2\int^{\epsilon}_ 0 x\,dx\delta\left(\frac{h''_0}{2}x^2\right)=g\left(x_0\right)\,2\int^{\frac{h''_0}{2}\epsilon^2}_ 0 \frac{dy}{h''_0}\delta\left(y\right)=g\left(x_0\right)\int^{\frac{h''_0}{2}\epsilon^2}_ {-\frac{h''_0}{2}\epsilon^2} \frac{dy}{h''_0}\delta\left(y\right)=\frac{g\left(x_0\right)}{h''_0}##

##\int dx f\left(x\right) \delta\left(h\left(x\right)\right)=\lim_{x->x_0}\frac{f\left(x\right)}{h''_0 \cdot \left(x-x_0\right)}##

This is a generic approach. In your case I would seek to go to spherical coordinates for ##k## and evalate the delta-function in the integral over k-radius.
 
  • Like
Likes amjad-sh
Thanks for your reply!
Cryo said:
This is a generic approach. In your case I would seek to go to spherical coordinates for kkk and evalate the delta-function in the integral over k-radius.

I went to spherical coordinates, but I got stuck with a a little bit nasty integral.
I will show you how I proceeded.
1-First I want to note that I wrote ##r_x## wrongly.
##r_x=\dfrac{2is\nu^2k_yk_z}{(k_z+\sqrt{k_z^2-2mv})^2+(s\nu^2)^2(k_x^2+k_y^2)}##
2- Now in spherical coordinates ##\delta(\dfrac{1}{2m}(k^2-k_f^2))=2m\delta(k^2-k_f^2)=2m(\dfrac{1}{2k_f})\Big[\delta(k-k_f)+\delta(k+k_f)\Big]=\dfrac{m}{k_f}\Big[\delta(k-k_f)+\delta(k+k_f)\Big]##
Where I have used the relations ##\delta(ax)=\dfrac{1}{a}\delta(x)## and ##\delta(x^2-a^2)=\dfrac{1}{2a}\Big[\delta(x-a)+\delta(x+a)\Big]## and## k^2=k_x^2+k_y^2+k_z^2##

3- $$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\int_0^{+\infty}\int_0^{\pi}\int_{0}^{2\pi}k^2sin(\theta)\dfrac{2ie}{m}k_y^2\Bigg(\dfrac{2is\nu^2k_z}{(k_z+\sqrt{k_z^2-2mV})^2+(\nu^2s)^2(k_x^2+k_y^2)}\Bigg)sin(2k_zz)\triangle\mu_L^x\dfrac{m}{k_f}\delta(k-k_f)\, d\theta \, d\phi \, dk$$
Now by using the change of variable ##k_x=ksin(\theta)cos(\phi)##
##\qquad \qquad \qquad \qquad \qquad \qquad \qquad k_y=ksin(\theta)sin(\phi)##
##\qquad \qquad \qquad \qquad \qquad \qquad \qquad k_z=kcos(\theta)##
$$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\int_0^{+\infty}\int_0^{\pi}\int_{0}^{2\pi}k^2sin(\theta)\dfrac{2ie}{m}\dfrac{k^2sin^2(\theta)sin^2(\phi)2is\nu^2kcos(\theta)}{(kcos(\theta)+\sqrt{k^2cos^2(\theta)-2mV})^2+(\nu^2s)^2k^2sin^2(\theta)}sin(2kcos(\theta)z)\triangle\mu_L^x\dfrac{m}{k_f}\delta(k-k_f)\, d\theta \, d\phi \, dk$$

$$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\int_0^{+\infty}\int_0^{\pi}\int_{0}^{2\pi}\dfrac{k^5\dfrac{2ie}{m}sin^3(\theta)sin^2(\phi)2is\nu^2cos(\theta)sin(2kzcos(\theta))\triangle\mu_L^x}{k^2cos^2(\theta)+k^2cos^2(\theta)-2mV+2kcos(\theta)\sqrt{k^2cos^2(\theta)-2mV}+(\nu^2s)^2k^2sin^2(\theta)}\dfrac{m}{k_f}\delta(k-k_f)\, d\theta \, d\phi \, dk$$

4- Now by using the integral ##\int_0^{2\pi} sin^2(\phi) \,d\phi=\pi##$$j_y^N(z<0)=-\dfrac{1}{(2\pi)^3}\Big(\dfrac{-4e\pi}{k_f}\Big)\int_0^{+\infty}\int_0^{\pi}\dfrac{\nu^2k^5sin^3(\theta)scos(\theta)sin(2kzcos(\theta))\triangle\mu_L^x}{k^2cos^2(\theta)+k^2cos^2(\theta)-2mV+2kcos(\theta)\sqrt{k^2cos^2(\theta)-2mV}+(\nu^2s)^2k^2sin^2(\theta)}\delta(k-k_f)\, d\theta \, dk$$

5- By using ##\int_0^{+\infty}f(k)\delta(k-k_f)dk=f(k_f)##

$$j_y^N(z<0)=\dfrac{1}{(2\pi)^3}\Big(\dfrac{4e\pi}{k_f}\Big)\int_0^{\pi}\dfrac{\nu^2k_f^5sin^3(\theta)scos(\theta)sin(2k_fzcos(\theta))\triangle\mu_L^x}{k_f^2cos^2(\theta)+k_f^2cos^2(\theta)-2mV+2k_fcos(\theta)\sqrt{k_f^2cos^2(\theta)-2mV}+(\nu^2s)^2k_f^2sin^2(\theta)}\, d\theta $$

$$j_y^N(z<0)=\dfrac{1}{2(2\pi)^3}(4e\pi)\int_0^{\pi}\dfrac{\nu^2k_f^4sin^3(\theta)scos(\theta)sin(2k_fzcos(\theta))\triangle\mu_L^x}{k_f^2\Bigg(cos^2(\theta)-\dfrac{mV}{k_f^2}+cos(\theta)\sqrt{cos^2(\theta)-\dfrac{2mV}{k_f^2}}+\dfrac{(\nu^2s)^2sin^2(\theta)}{2}\Bigg)}\, d\theta $$

6- Let ##u=cos(\theta)## then ##du=-sin(\theta)d\theta##

$$j_y^N(z<0)=\dfrac{-k_f^2es}{4(\pi)^2}\int_1^{-1}\dfrac{\nu^2(1-u^2)usin(2k_fzu)\triangle\mu_L^x}{u^2-\dfrac{mV}{k_f^2}+u\sqrt{u^2-\dfrac{2mV}{k_f^2}}+\dfrac{(\nu^2s)^2(1-u^2)}{2}}\, du $$

So we can say now that :
##j_y^N(z<0)=\dfrac{-k_f^2es}{(2\pi)^2} g(\nu,2k_fz)\triangle\mu_L^x##
where$$ g(\nu,2k_fz)=
\int_1^{-1}\dfrac{\nu^2(1-u^2)usin(2k_fzu)}{u^2-\dfrac{mV}{k_f^2}+u\sqrt{u^2-\dfrac{2mV}{k_f^2}}+\dfrac{(\nu^2s)^2(1-u^2)}{2}}\, du $$

Does my approach look right, did I do something wrong?
and do you think this integral can be solved analytically? or I need a computer?
 
Sorry for delay. The approach seems right to me, although I do not have time to check the maths thoroughly. The final integral does look nasty, but it is easy to compute numerically (finite domain), so I usually do not bother in such cases.

If I did want to bother with it, I would first try to plot the integrand, estimate the rough magnitude of different terms, and see if there are any approximations I could make. Maybe some of the nastyness never comes into play in your problem.

I would also try looking at the integrand on the complex plane and deforming the path of integration to simplify the evaluation. But, I am not sure this would help.
 
  • Like
Likes amjad-sh

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K