Alright, so I was wondering if anyone could help me figure out from one step to the next...(adsbygoogle = window.adsbygoogle || []).push({});

So we have defined |qt>=exp(iHt/[itex]\hbar[/itex])|q>

and we divide some interval up into pieces of duration τ

Then we consider

<[itex]q_{j+1}[/itex][itex]t_{j+1}[/itex]|[itex]q_{j}[/itex][itex]t_{j}[/itex]>

=<[itex]q_{j+1}[/itex]|e^{-iHτ/[itex]\hbar[/itex]}|[itex]q_{j}[/itex]>

=<[itex]q_{j+1}[/itex]|1-(i/[itex]\hbar[/itex])Hτ+O(τ^{2})|[itex]q_{j}[/itex]>

=[itex]\delta[/itex]([itex]q_{j+1}[/itex]-[itex]q_{j}[/itex])-(iτ/[itex]\hbar[/itex])<[itex]q_{j+1}[/itex]|H|[itex]q_{j}[/itex]>

Dumb question:

Where did the delta function come from? I know where the second term comes from and I'm assuming that the higher order terms are being tossed since the τ^{2}and higher order terms have been deemed sufficiently small...but where does this delta function come from?

Is this something like <[itex]q_{j+1}[/itex]|1|[itex]q_{j}[/itex]> = 1 iff [itex]q_{j+1}[/itex]=[itex]q_{j}[/itex], or something having to do with independence? But...then I don't see why after this we have:

(2[itex]\pi[/itex][itex]\hbar[/itex])^{-1}[itex]\int[/itex]dp e^{(i/[itex]\hbar[/itex])p([itex]q_{j+1}[/itex]-[itex]q_{j}[/itex]})

coming from the delta function term .-. what?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Dirac Notation in building Path Integrals

**Physics Forums | Science Articles, Homework Help, Discussion**