Direct product of two semi-direct products

Cairo
Messages
61
Reaction score
0
Homework Statement
I need to find the number of elements and conjugacy classes for the direct product.
Relevant Equations
$$G=(C_7:C_3\ )\times(C_{13}:C_3\ )$$
After finding the number of elements for this group, how do I extend the argument to $$p,q\equiv1\left(mod\ 3\right)$$, where $$G=(C_p:C_3\ )\times(C_q:C_3\ )$$Any help appreciated.
 
Physics news on Phys.org
What is ##C_p## and what is ##C_7:C_3##?
 
$$C_7 : C_3$$ is a semi-direct product.

$$C_p$$ is as described. A prime, congruent to 1 mod 3.
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top