DISCRETE MATH: Use rules of inference to show that...

  1. 1. The problem statement, all variables and given/known data

    Use rules of inference to show that if [tex]\forall\,x\,(P(x)\,\vee\,Q(x))[/tex] and [tex]\forall\,x\,((\neg\,P(x)\,\wedge\,Q(x))\,\longrightarrow\,R(x))[/tex] are true, then [tex]\forall\,x\,(\neg\,R(x)\,\longrightarrow\,P(x))[/tex] is true.


    2. Relevant equations

    Universal instantiation, Disjunctive syllogism, Conjunction.



    3. The attempt at a solution

    1) [tex]\forall\,x\,(P(x)\,\vee\,Q(x))[/tex] Premise

    2) [tex]P(a)\,\vee\,Q(a)[/tex] Universal instantiation of (1)

    3) [tex]\neg\,P(a)[/tex] Disjunctive syllogism of (2)

    4) [tex]\forall\,x\,((\neg\,P(x)\,\wedge\,Q(x))\,\longrightarrow\,R(x))[/tex] Premise

    5) [tex](\neg\,P(a)\,\wedge\,Q(a))\,\longrightarrow\,R(a)[/tex] Universal instantiation of (4)

    6) [tex]R(a)[/tex] Modus Ponens of (5)

    Here I am stuck, any suggestions?
     
  2. jcsd
Know someone interested in this topic? Share a link to this question via email, Google+, Twitter, or Facebook

0
Draft saved Draft deleted