1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

DISCRETE MATH: Use rules of inference to show that

  1. Jan 25, 2007 #1
    1. The problem statement, all variables and given/known data

    Use rules of inference to show that if [tex]\forall\,x\,(P(x)\,\vee\,Q(x))[/tex] and [tex]\forall\,x\,((\neg\,P(x)\,\wedge\,Q(x))\,\longrightarrow\,R(x))[/tex] are true, then [tex]\forall\,x\,(\neg\,R(x)\,\longrightarrow\,P(x))[/tex] is true.


    2. Relevant equations

    Universal instantiation, Disjunctive syllogism, Conjunction.



    3. The attempt at a solution

    1) [tex]\forall\,x\,(P(x)\,\vee\,Q(x))[/tex] Premise

    2) [tex]P(a)\,\vee\,Q(a)[/tex] Universal instantiation of (1)

    3) [tex]\neg\,P(a)[/tex] Disjunctive syllogism of (2)

    4) [tex]\forall\,x\,((\neg\,P(x)\,\wedge\,Q(x))\,\longrightarrow\,R(x))[/tex] Premise

    5) [tex](\neg\,P(a)\,\wedge\,Q(a))\,\longrightarrow\,R(a)[/tex] Universal instantiation of (4)

    6) [tex]R(a)[/tex] Modus Ponens of (5)

    Here I am stuck, any suggestions?
     
  2. jcsd
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Can you help with the solution or looking for help too?



Similar Discussions: DISCRETE MATH: Use rules of inference to show that
Loading...