- #1
Mr Davis 97
- 1,462
- 44
Homework Statement
What is the first step in proving a proposition of the form ##\forall x (P(x) \implies Q(x))##
Homework Equations
The Attempt at a Solution
So this isn't exactly a homework question, but I am just trying to figure things out. So say that we have a conjecture of the form ##\forall x (P(x) \implies Q(x))##. In my textbook, it says that to (formally) prove a proposition such as this, we first prove ##P(c) \implies Q(c)##, where c is an arbitrary element of the domain of discourse, and then by the inference rule of universal generalization, conclude that ##\forall x (P(x) \implies Q(x))##.
However, I confused as to how to get to the second step. First we begin with ##\forall x (P(x) \implies Q(x))##. So to get to ##P(c) \implies Q(c)## don't we need to apply universal instantiation? And to apply universal instantiation, don't we first need to know that ##\forall x (P(x) \implies Q(x))## is true? Isn't that kind of circular?