I Do electromagnetic waves fade with distance in vacuum?

AI Thread Summary
Electromagnetic waves do fade with distance due to the inverse square law, which causes energy density to decrease as the wave spreads over a larger area. However, the frequency of the electromagnetic wave remains constant regardless of distance. Signals from outer space retain enough energy to be detected despite the fading, as they start with significant initial energy. Telescopes can capture these signals even after they have traveled thousands of light years. Understanding these principles clarifies how we can detect distant cosmic signals.
yashraj
Messages
6
Reaction score
2
TL;DR Summary
Do electromagnetic wave gets weaker with the increasing distance from the source in its travel ?
I want to know that when a charged particle accelerates then the electromagnetic wave so produced will loose it's strength or can say fades with distance or not ? If yes then what happens to its frequency and also tell me if electromagnetic waves fades away with increasing distance from the source then how physicists detects signals from the outer space which have travelled thousands of light years ?
 
Physics news on Phys.org
Welcome to PF.

As an EM wave radiates out into space, the energy is distributed over the surface of a radially growing sphere. That causes the EM wave energy density to be reduced by the inverse square law.

The frequency of the EM wave remains the same.

The signals detected from space start out with incredible energy. After the inverse square law has been applied, there is sufficient energy remaining, to enter the aperture of the telescope, and for the signals to be detected.
 
Baluncore said:
Welcome to PF.

As an EM wave radiates out into space, the energy is distributed over the surface of a radially growing sphere. That causes the EM wave to be reduced by the inverse square law.

The frequency of the EM wave remains the same.

The signals detected from space start out with incredible energy. After the inverse square law has been applied, there is sufficient energy remaining, to enter the aperture of the telescope, and for the signals to be detected.
Thank you for the answer. I was actually thinking almost same but I wanted to make sure that I was right.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Hello! I am generating electrons from a 3D gaussian source. The electrons all have the same energy, but the direction is isotropic. The electron source is in between 2 plates that act as a capacitor, and one of them acts as a time of flight (tof) detector. I know the voltage on the plates very well, and I want to extract the center of the gaussian distribution (in one direction only), by measuring the tof of many electrons. So the uncertainty on the position is given by the tof uncertainty...
Back
Top