Barry_G said:
Has such experiment been performed?
Not directly. Carlip argues in
Kinetic energy and the equivalance principle that we do have good experimental reason to believe that electromagnetic binding energy contributes to gravity, and that this implies that electromangetic fields must gravitate. Classically (and GR is a classical theory), light is made up out of electromagnetic fields, so we know it's made up of something that's been observed to contribute to gravity (albeit indirectly).
Carlip also briefly discusses the "box of light". Carlip shows that in weak field gravity, the total system (box + light) must gravitate according to the total energy. There is a similar result for strong fields , but it requires that the metric be stationary (i.e. not a function of time). The argument is different in detail from Carlip's. While I'm not aware of any paper that specifically does the strong field calculation for a box of light, the calculations aren't hard to perform.
The non-technical summary of the strong field argument is that in some sense the interior of the box, the light, does "weigh" twice as much, but that the stress in the box walls compensates for this giving a negative contribution to the weight, due to the tension in the container walls.
As an aside, recall that tension and pressure are part of the stress-energy tensor - so here we see an example of stresses contributing to gravity.
The more technically accurate way removes the words "in some sense" by saying that it is the Komar mass of the interior of the box that doubles for the "box of light". This makes the argument more precise, at the cost of introducing a new term that seems to scare people away from understanding the point to be made. On the other hand, some "scariness" is perhaps warranted, at least if the fear induces some caution, for reasons which will be explained below.
As previously mentioned, even though the contents of the box weight twice as much, the stresses in the walls subtract from this "extra" mass, and you recover the value E/c^2 for the mass of contents + walls.
It's worth mentioning at this point, at the risk of confusion, that there are several definitions of "mass" in general relativity, and NONE of them is completely general (including the Komar mass). ALL of them require certain preconditions to be applied. Understanding the conditions where they are applicable may take some work, this is where the "scariness" factor comes in.
The "big three" sorts of mass in GR are Komar mass, ADM mass, and Bondi mass - you'll see a brief discussion of them in the wiki at
http://en.wikipedia.org/w/index.php?title=Mass_in_general_relativity&oldid=514908524