Bill, we had this discussion a couple of times and my answer was always that this definition does not work in not-asymptotically flat spacetimes, therefore one should look for a local definition
Tom, the understanding of radiation is rather firmly established - it's a global phenomenon, not a local one, in which a bounded system irreversibly loses energy to infinity. In the framework of GR one could perhaps extend the analysis from asymptotically flat spacetimes to de Sitter, or some other open cosmology.
But the radiation concept is not limited to GR. It's a basic feature of electromagnetism, as well as mechanical systems, such as elastic media. There are several reasons we treat it asymptotically.
One is simplicity - radiation exhibits common features at infinity which are far simpler than the details of what is happening at the source. For example, radiation may be conveniently described in terms of time-varying multipole moments, and knowing only these you know the energy loss.
A second reason is that some source motions transfer energy without producing radiation. Energy may be transferred from one part of the source to another "inductively", e.g. a pair of orbiting planets in Newtonian gravity, which constantly exchange energy and momentum through the inductive zone, which is 1/r
2 rather than 1/r. Likewise many electromagnetic examples.
Or even such a simple system as a pair of pendulums, coupled to each other, and also coupled to an infinitely long spring. You imagine there could be a local definition of radiation? As one of the two pendulums loses amplitude, it would be impossible to tell from its (local) motion alone whether the energy is being transferred (temporarily) to the other, or (permanently) lost to infinity. The answer must necessarily involve an analysis of the entire system, not just the one pendulum. That is, it must be global.