TrickyDicky said:
you might try and use it just to approximate the orbit of 2 bodies when their distance is very large wrt their radii and call them geodesic orbits, but that won't get you a realistic approximation for the gravitational radiation of that system, for that you need strong-field numerical relativity.
This makes sense, and I agree it might indeed be what Gralla was trying to say. Basically this would mean that, since the orbital period of the binary pulsar is much shorter than the characteristic time scale for gravitational radiation from that system, the post-Newtonian method would give approximate geodesic orbits for time scales short compared to the radiation time scale, but if you tried to model the long-term behavior of the system that way you would have to adjust the orbital parameters every so often as gravitational radiation was emitted to keep the approximation close enough. To actually predict the long-term changes in the orbital parameters, you would need to do the strong field numerical simulation.
TrickyDicky said:
if you want to call geodesic motion to all orbiting bodies, extended or test particles, regardless of the intensity of the radiation (gravitational or EM) they are emitting you basically are saying that all test particles and extended bodies worldlines following some kind of orbit no matter how unstable are following geodesic motion which I don't think it's true.
I'm not trying to say this. I agree there would be little point in the concept of a geodesic if it didn't give you a way to pick out some meaningful subset of all possible worldlines.
TrickyDicky said:
if orbiting bodies emitting radiation, regardless of the intensity(strong-field case) didn't see affected their geodesic motion, first:what could actually ever affect a geodesic path? and second: how do we expect that radiation to affect distance bodies detectors if it isn't capable to alter the geodesic path of the emitting body in the least(as long as we still consider third Newton's law as valid of course).
Geodesic paths can "change" and still be geodesic paths because of changes in the metric that defines what a geodesic path is. Consider the detector scenario; suppose we have a GW detector that uses interferometry, like LIGO or LISA. When a gravitational wave passes through the detector, it shows interference fringes; but the individual mirrors that reflect the laser light that shows the fringes (because of small changes in the proper length between the mirrors) are in free fall the whole time. They are following geodesics, but geodesics of a time-varying metric.
Similarly, the two neutron stars in the binary pulsar could be following geodesics, but still have their orbital parameters change, because the metric is changing. In fact, that's probably the wrong way to think about it, though, because the changes in the orbital parameters, at least to a first approximation, *are* the changes in the metric. The stars themselves don't change, considered in isolation; what changes is their relationship. The overall metric of the system as a whole includes the relationship between the stars, so if that changes, the metric changes, even if each star remains exactly the same internally. This doesn't mean the stars don't travel on geodesics; it means that there is a single self-consistent solution realized by Nature (which we can only approximate at our current level of knowledge) that has each star (more precisely, each star's center of mass) traveling on a geodesic of the full, time-dependent metric that is ultimately due to the two stars acting together as sources.
But *why* would the orbital parameters change, if the stars themselves are not changing internally? AFAIK the answer to this involves the light-speed time delay in the propagation of gravity, as outlined, for example, in this paper by Carlip:
http://arxiv.org/abs/gr-qc/9909087
Of course it's possible that the full, self-consistent solution realized by Nature does not have the stars traveling on exact geodesics of the full, time-dependent metric; that's what Gralla seems to think, for example. We won't know for sure until we can construct such solutions and make more precise observations. But I don't think we can rule out the possibility that, at least for systems like the binary pulsar, gravitational waves can be emitted without requiring any deviation from geodesic motion to explain them.