- #26

- 3

- 0

I like this forum!

I used Mac Laurin (1/(1-x/2) and e^(i*pi))formulas therefore "i" can be written as relation which is containing series but not just one summation series because i^0=1; i^1=i;i^2=-1;i^3=-i;i^4=1....

Now using Mac Laurin formula for 1/(1-x/2) and k=sum(j=0;oo;(1/2)^(4*j)); we have i=-2*(15*k-4)/(15*k-16).

This is not a sum of series but a relation which contains series.

I used Mac Laurin (1/(1-x/2) and e^(i*pi))formulas therefore "i" can be written as relation which is containing series but not just one summation series because i^0=1; i^1=i;i^2=-1;i^3=-i;i^4=1....

Now using Mac Laurin formula for 1/(1-x/2) and k=sum(j=0;oo;(1/2)^(4*j)); we have i=-2*(15*k-4)/(15*k-16).

This is not a sum of series but a relation which contains series.

Last edited: