- #1
squenshl
- 479
- 4
Homework Statement
1. Consider the sequence $$\frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5},\frac{1}{6}, \ldots$$ For which values ##z \in \mathbb{R}## is there a subsequence converging to ##z##?
2. Prove that if ##\lim_{n\to \infty} x_n = z## then $$\lim_{n\to \infty} \frac{x_1+x_2+\ldots+x_n}{n} = z$$.
Homework Equations
The Attempt at a Solution
1. If we take the subsequence ##\frac{1}{2}, \frac{2}{4}, \frac{3}{6}, \ldots## we can see that this is converging to ##\frac{1}{2} \in \mathbb{R}##. Am I on the right track or just not even close.
2. No idea how to attack this one.
Some help will be great thanks!