Does every Hausdorff space admit a metric?

  • Thread starter Thread starter Stevo
  • Start date Start date
  • Tags Tags
    Metric Space
Stevo
Messages
114
Reaction score
1
^....
 
Physics news on Phys.org
Every metric space is Hausdorff but not every Hausdorff space is metrizable!

Googling on "Hausdorff" and "metrizable", I found
"Metrizable requires, in addition to Hausdorf, separability and existence of at least one countable locally finite cover. Those three are independent requirements; if you could do without anyone of them you would have a much stronger theorem, and be famous among topologists (nobody else would notice or care)." attributed to a "DickT" on

http://superstringtheory.com/forum/geomboard/messages3/143.html

apparently a "string theory" message board.
 
Last edited by a moderator:
That was me, and I stand behind it. I should, because I got it straight out of one of my old textbooks!
 
HallsofIvy said:
Every metric space is Hausdorff but not every Hausdorff space is metrizable!

Googling on "Hausdorff" and "metrizable", I found
"Metrizable requires, in addition to Hausdorf, separability and existence of at least one countable locally finite cover. Those three are independent requirements; if you could do without anyone of them you would have a much stronger theorem, and be famous among topologists (nobody else would notice or care)." attributed to a "DickT" on

http://superstringtheory.com/forum/geomboard/messages3/143.html

apparently a "string theory" message board.

Yeah, it's pretty easy to show that every metric space is Hausdorff... I wasn't sure if the converse was true. Thanks for that.

Does anybody have a proof, a link to a proof, or a reference to a proof that metrisation requires Hausdorff, separability, and existence of a countable locally finite cover?
 
Last edited by a moderator:
Stevo said:
Does anybody have a proof, a link to a proof, or a reference to a proof that metrisation requires Hausdorff, separability, and existence of a countable locally finite cover?

Try these:-
1) Manifolds at and beyond the limit of metrisability at arXiv:math.GT/9911249
2) http://www.math.auckland.ac.nz/~gauld/research/ (the file is labelled metrisability.pdf)
both by David Gauld at University of Auckland Department of Mathematics.

A mathematical physics prof taught me that paracompactness must also be one of the criteria of metrisability.
Can there really be a proof that doesn't include this criteria?
 
Last edited by a moderator:
Paracompactness is a generalization from the countable locally finite cover. If a space is paracompact then every open cover of it has a countable locally finite refinement. So you get a little narrower theorem by specifying the CLF cover specifically, but in many instances, you would use the given paracompactness of the space to prove the CLF cover exists.

The theorem is called Urysohn's theorem. http://www.cs.utk.edu/~mclennan/Classes/594-MNN/MNNH/MNNH-3/node20.html is a sketch of the proof.
 
Last edited by a moderator:
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top