Marcus, thanks, I have been thinking about the important tension between mathematical "technology" as it were, and ontology. Clearly it's complicated but as you can probably guess I wish there was more out there for those who are not fluent in mathematics (compared to the practitioners) but who want to follow the way mathematical techniques are used in pursuit of ontology, because we understand that is "seeing the ontology for oneself" at some level, and somewhat irreducible. This Pachner moves tutorial, though way too time consuming (for you and Julcab) and too dialectic to be scale-able or sustainable is a great example of it - continued education for the non-practitioner, for which I am thankful.
To wish out loud for something more incrementally practical I wish someone would create an equation translator/annotator, even if all it did at first was list a glossary of all symbols used in whatever calculation was selected below the calc... or in call-out bubble (the live text model is appealing here because you can layer things in such away - to be accessed interactively). Mathematical software languages are an interesting hybrid, more instructive semantically, but I think not specific to the task, which is stay as close to canonical symbolism, but also explicate. I can read, and with my finger on the glossary I can often times track the technical description at the fine grain scale of ontology, often times. But it's logistically, a nightmare just to get them together.
Anyway, all that wishing aside
I do love when you get ontological...
marcus said:
To me this seems more satisfactory, partly because I take the momentary signature change of the "silent bounce" seriously---that business proposed by Barrau Linsefors Mielczarek. It is an extremely bold proposal, but I have not seen it shot down yet. Essentially interaction between all microscopic degrees of freedom is SUPPRESSED at extreme density. A brief Euclidean phase, of total isolation and silence, at the bounce. In which the speed of light is effectively zero, light cones close and then, as density lessens, reopen.
The causal structure is momentarily trivial and I think time is impossible because no oscillator or cyclic process of any kind is possible, nor any counting of cycles. Operationally speaking, time cannot be defined or measured under such a clockless condition, so time is in some sense "reset" or "rebooted" at the bounce. Degrees of freedom must be able to interact in order for there to be an kind of repetitive cycle. There is inevitably a kind of "round robin" in any oscillator. And I suspect that an even higher degree of interactive connectivity is needed to have a counter that is accumulating information about the causal past. So I can imagine a world in which causality functions (the coral reef grows) but interaction is as yet too primitive and limited for time to apply. Nothing there to "keep" it.
Clearly you understand this stuff at a level from which you can teach (is that what you do?)
I want to understand more about the bounce. I printed the paper you reference about the inflationary period implications of LQG but it was a bit referential and not enough context for me to get a lot from it. I got stuck on the ontology of the Friedman Equation - and the assumption of mass and energy defining the changing size of the universe, the shape of which seems to define them...? That paper though is a perfect example of one I think I could get better with an in-situ math glossary, because it is talking about physics or "specific ontology" - not just pure mathematics.
But my cartoon is that this is a new description of the "singularity" we found at the "going back down space-time" limit, the one that has been giving fits. With this one, instead of an infinity we get something that remains coherent, if zero is more coherent than infinity, which I think it is. I get why it could be consistent with a notion of cyclic time (I'm in the middle of Penrose "Cycles of Time"). I'm also curious about the "how would be know we were on the other side of the signularity?" question. In other words how do we know it's not a bounce as much as it is a passage - through the boundary-singularity, to the voluminous other-side...where things are different. I'd like to have a better picture of all this.
I am pretty enamored with this ECS notion to be sure, exactly because it is free of global time. To my mind this is an unavoidable requirement given the EPR paradox (or at least my cartoon of it). Clearly a simple table-top experiment with fairly common-place light and two slits, poses a staggering puzzle to ontology. How can there be such accessible domains that are... without time? How can temporally separated "events" interact as though happening at once? Eliminating Global-time seems the only option. I get that there are rules regarding that interaction, moving information through the time-less domain is a fail, mass energy velocity affect our visibility onto that domain, etc - so it's more subtle than sci-fi, but the mother of all puzzles is there. If anything the rules only make is even more tantalizing. I say it's more subtle than sci-fi but then I haven't seen "Interstellar" yet.
Causality itself is still a problem though IMHO when considering ECS vis-a-vis EPR, and I read a researcher dismissing ECS saying that it does no better than continuum approaches at the limit because of this implied background "ordinal" that separates events.
Maybe it doesn't describe the ultimate container-less set, But I don't agree it does no better, rather I take from it a picture composed of a universe of pure black unknown, except we know it can (and apparently must) contain no less than two "causal sets", each with different space-time, but intersecting - or more properly "inter-acting".
And I can't help but think of Entropy (the leaking in/out of total set configuration space) as the only veil we have, that outlines the collision. This is why Verlinde got my attention when he suggested that space-time is emergent from Entropy. I would be fascinated to see Entropy described in the SF causal set model - some uniform curvature convolved with the foam?
Anyway, I haven't forgotten about the Smolin et al. book. I am definitely getting it.
Thanks again..