Does Parity Operator Squared Equal Identity Operator?

UrbanXrisis
Messages
1,192
Reaction score
1
just wondering... does the parity operator squared give the identity operator?
 
Physics news on Phys.org
What, exactly, is the definition of the "parity operator"?
 
what would happen if you take a wave function Psi and apply the Parity operator twice?
try it
 
hehe... so it WOULD be an like the identity operator
 
Oh. I thought this was a MATH problem!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top