MHB Does Proposition 3.2.6 Imply g'(y) = x' - f(f'(x'))?

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book "Rings and Their Modules" ...

Currently I am focused on Section 3.2 Exact Sequences in $$\text{Mod}_R$$ ... ...

I need some further help in order to fully understand the proof of Proposition 3.2.6 ...

Proposition 3.2.6 and its proof read as follows:
View attachment 8079
In the above proof of Proposition 3.2.6 we read the following:"... ... now define $$g' \ : \ M_2 \longrightarrow M$$ by $$g'(y) = x - f(f'(x))$$, where $$x \in M$$ is such that $$g(x) = y$$ ... ... ... ...

... ... Suppose that $$x' \in M$$ is also such that $$g(x') = y$$ ... ... Does the above text imply that $$g'(y) = x' - f( f'(x') )$$ ... ... ?

Peter
 
Physics news on Phys.org
Hi Peter,

Yes, indeed, $g'(y) = x-f(f'(x)) = x' - f(f'(x'))$, since the last equality has just been proved. This shows that $g'(y)$ in unambiguously defined; please refer to my previous post for an intuitive explanation.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top