MHB Does Proposition 3.2.6 Imply g'(y) = x' - f(f'(x'))?

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book "Rings and Their Modules" ...

Currently I am focused on Section 3.2 Exact Sequences in $$\text{Mod}_R$$ ... ...

I need some further help in order to fully understand the proof of Proposition 3.2.6 ...

Proposition 3.2.6 and its proof read as follows:
View attachment 8079
In the above proof of Proposition 3.2.6 we read the following:"... ... now define $$g' \ : \ M_2 \longrightarrow M$$ by $$g'(y) = x - f(f'(x))$$, where $$x \in M$$ is such that $$g(x) = y$$ ... ... ... ...

... ... Suppose that $$x' \in M$$ is also such that $$g(x') = y$$ ... ... Does the above text imply that $$g'(y) = x' - f( f'(x') )$$ ... ... ?

Peter
 
Physics news on Phys.org
Hi Peter,

Yes, indeed, $g'(y) = x-f(f'(x)) = x' - f(f'(x'))$, since the last equality has just been proved. This shows that $g'(y)$ in unambiguously defined; please refer to my previous post for an intuitive explanation.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top