I Does Space Curvature Account for Gravity Between Individual Atoms?

AI Thread Summary
The discussion explores the relationship between gravity and space-time curvature, questioning whether this curvature accounts for gravitational attraction at the atomic level. While gravity is fundamentally linked to spacetime curvature, its effects are often overshadowed by stronger forces in micro-scale interactions. Current models indicate that gravity is always a manifestation of spacetime curvature, but the application of this concept to quantum scales remains uncertain. General relativity fails to address gravity in the context of isolated atoms, and a comprehensive theory of quantum gravity is still lacking. The relevance of spacetime curvature in atomic interactions is still an open question in physics.
Martyn Arthur
Messages
114
Reaction score
20
TL;DR Summary
Gravity/space curvature in relation to the accretion of dust in the Solar System et al
I am trying to come to terms with the two concepts of gravity, direct attraction between bodies (say dust even) and attribution to the curvature of space (time)
Looking at a physical sea coast I can envisage how every instance of the mass gravitational interactions of individual atoms or smaller can be incorporated into the ebb and flow of the tide, albeit on a scale that I can't even start to envisage from such an observation.

Having regard to the way in which the curvature of space-time is attributed to the 'gravity' between 'massive' solar objects is space curvature deemed to account also for gravitational attraction twixt even individual atoms or smaller?

Thanks
Martyn
 
Last edited by a moderator:
Physics news on Phys.org
On the micro scale there are generally other forces that are WAY stronger such that gravity is irrelevant but gravity IS spacetime curvature so ANY time gravity comes into play it is spacetime curvature.
 
Gravity is always spacetime curvature (not space curvature!) as it is currently modeled.

However, exactly how gravity works when the sources are small enough that quantum physics is important (such as an isolated atom) is not certain. General relativity can't do it and we don't yet have a working theory of quantum gravity. Depending on what that looks like, spacetime curvature may or may not turn out to be a useful model at that scale.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...

Similar threads

Replies
5
Views
2K
Replies
25
Views
3K
Replies
19
Views
4K
Replies
19
Views
10K
Replies
13
Views
2K
Replies
30
Views
5K
Back
Top