georgir
- 266
- 10
PeterDonis said:To say that SR predicts a proper acceleration but doesn't predict that it's detectable is nonsense; a prediction is a prediction of an observation. SR predicts that astronauts inside the ISS would feel weight, would be able to stand on the "floor" of the station, etc., just as they would inside a rocket with its engine firing. That's what proper acceleration *means*, physically. The mathematical expression is not proper acceleration; it's just how proper acceleration, the physical, detectable phenomenon, is represented in the math.
Not to mention that the proper acceleration would be easy to detect even without looking at the reading on a scale: SR predicts that the astronaut would be able to *stand* on a scale in the ISS, just as it predicts that you would be able to stand on a scale inside the moving chamber in a giant centrifuge floating freely in flat spacetime.
The "floor" is also getting accelerated in exactly the same way as the astronauts are, so the astronauts would not be able to stand on it. The situation is exactly analogous to the Newtonian model.
Last edited:
