- #1
ampakine
- 60
- 0
I keep reading explanations that say things like "the mean is normally approximated" but I don't know what that means. Are they saying that if you take a load of samples then plot the means of every one of those samples on a graph that the mean of that graph will be approximately the population mean of the population that you took the samples from? For example let's say I want to know the probability that I can catapult a gypsy 15 metres or more so once a year I go around the world randomly picking out gypsies and seeing how far I can catapult them. The population is how far I can catapult every gypsy in the world but on my yearly I only catapult about 20 gypsies. Does the central limit theorem say that if I take the average catapult distances obtained from each of these yearly gypsy catapulting expeditions and plot them on a graph that this graph will keep becoming more and more normal every year as I add a new mean to it? Is that the idea or have I got it wrong?