Does the Vacuum Solution in General Relativity Hold in the Presence of Matter?

  • Thread starter Thread starter Thinkor
  • Start date Start date
  • Tags Tags
    Vacuum
Thinkor
Messages
49
Reaction score
1
The general field equation for GR is

Rab - 1/2 gab R = 8πTab

where I am setting G = 1 and c = 1.

Also, the vacuum solution is

Rab = 0

But it seems to me that this "vacuum" solution must hold even when there is matter present. Pick a point within a planet. Then excavate an infinitesimal vacuum chamber about the point. That can't affect the solution there because the local contribution to the solution is infinitesimal. Therefore, whether there is a vacuum at a point or not makes no difference, the vacuum solution still holds. Rab = 0 is a constraint on curvature that is everywhere satisfied.

So why can't the field equation then be simplified to this by replacing Rab with 0?

- 1/2 gab R = 8πTab

That makes it look a lot like Gauss's law of gravity, which does not add in a zero term representing a vacuum solution.

2\varphi = 4πρ

This makes more sense to me. The solution is determined by the sources only, not by a zero valued vacuum solution.

Did Einstein glue together two equations into one for brevity? If so, why doesn't Gauss's law need another equation? And why would a vacuum solution be needed in addition to the source term in GR?
 
Last edited:
Physics news on Phys.org
Thinkor said:
But it seems to me that this "vacuum" solution must hold even when there is matter present. Pick a point within a planet. Then excavate an infinitesimal vacuum chamber about the point. That can't affect the solution there because the local contribution to the solution is infinitesimal. Therefore, whether there is a vacuum at a point or not makes no difference, the vacuum solution still holds.

This is not correct. You could make this argument for calculating an integral, for example. I could say "The contribution to the integral from each infinitesimal dx is infinitesimal, therefore I can ignore it and set it to zero, and the integral of any function is zero." The problem with your argument is that, while the contribution to the solution for each infinitesimal volume is infinitesimal, when I add up an infinite number of them, I get a non-zero result. Imagine taking your "inifinitesimal vacuum chamber" to be finite but small, then take the limiting procedure of taking the volume of the chamber to zero. While the volume of the chamber tends to zero, the number of chambers tends to infinity and the sum of the contributions from all of the chambers is non-zero.
 
Thinkor said:
So why can't the field equation then be simplified to this by replacing Rab with 0?

- 1/2 gab R = 8πTab

That makes it look a lot like Gauss's law of gravity, which does not add in a zero term representing a vacuum solution.

2 = 4πρ

In addition to phyzguy's comments, if ##R_{ab} = 0## then clearly the field equations do not resemble ##\nabla^2 \varphi = 4\pi \rho## for non-vanishing ##\rho## because ##R_{ab} = 0## trivially implies ##R = 0## which reduces your equation to ##T_{ab} = 0##, the Newtonian analogue of which is Laplace's equation ##\nabla^2 \varphi = 0##.
 
phyzguy said:
This is not correct. You could make this argument for calculating an integral, for example. I could say "The contribution to the integral from each infinitesimal dx is infinitesimal, therefore I can ignore it and set it to zero, and the integral of any function is zero." The problem with your argument is that, while the contribution to the solution for each infinitesimal volume is infinitesimal, when I add up an infinite number of them, I get a non-zero result. Imagine taking your "inifinitesimal vacuum chamber" to be finite but small, then take the limiting procedure of taking the volume of the chamber to zero. While the volume of the chamber tends to zero, the number of chambers tends to infinity and the sum of the contributions from all of the chambers is non-zero.

Yes, thanks. I failed to recognize in it the more complex context that exists here.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top