MHB Does This Cayley Table Accurately Represent the Dihedral Group \(D_6\)?

  • Thread starter Thread starter Guest2
  • Start date Start date
  • Tags Tags
    Table
Click For Summary
The discussion focuses on the construction of the Cayley table for the dihedral group \(D_6\), which includes rotations denoted by \(r\) and reflections denoted by \(f\). Participants identify errors in the initial table, particularly regarding the subgroup structure and the properties of reflections and rotations. Key corrections involve ensuring that the product of two reflections results in a rotation and that the order of reflections is two. The final table incorporates feedback, demonstrating the relationships between elements and the structure of the group, including the non-commutativity of \(r\) and \(f\). The conversation emphasizes the mathematical intricacies of group theory and its applications in geometry and chemistry.
Guest2
Messages
192
Reaction score
0
This is an attempt to create the Cayley table for dihedral group $D_6$:

$$\begin{aligned} \begin{array}{cc|c|c|c|}
* && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f\\
\\
\hline
e && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline
r && r & r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f \\
\hline
r^2 && r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf \\
\hline
r^3 && r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f \\
\hline
r^4 && r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f\\
\hline
r^5 && r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f \\
\hline
f && f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f \\
\hline
rf && rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e \\
\hline
r^2f && r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r\\
\hline
r^3f && r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf \\
\hline
r^4f && r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f \\
\hline
r^{5}f && r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f & r^3f \\
\hline
&& & &
\hline
\end{array} \end{aligned}$$

Is this how it should be done? $r$ denotes rotations and $f$ denotes reflections.
 
Physics news on Phys.org
Guest said:
This is an attempt to create the Cayley table for dihedral group $D_6$:

$$\begin{aligned} \begin{array}{cc|c|c|c|}
* && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f\\
\\
\hline
e && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline
r && r & r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f \\
\hline
r^2 && r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf \\
\hline
r^3 && r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f \\
\hline
r^4 && r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f\\
\hline
r^5 && r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f \\
\hline
f && f& rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f \\
\hline
rf && rf& r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e \\
\hline
r^2f && r^2f& r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r\\
\hline
r^3f && r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf \\
\hline
r^4f && r^{4}f& r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f \\
\hline
r^{5}f && r^{5}f & f & rf & r^2f & r^3f &r^4f & r^5f &e & r & rf & r^2f & r^3f \\
\hline
&& & &
\hline
\end{array} \end{aligned}$$

Is this how it should be done? $r$ denotes rotations and $f$ denotes reflections.
You've got a boo-boo. I didn't check the rest of the chart but {e, r, r^2, r^3. r^4, r^5} is a subgroup, but you have r*r^5 = f. (etc) At least some of the f's in the chart should be e's.

-Dan
 
topsquark said:
You've got a boo-boo. I didn't check the rest of the chart but {e, r, r^2, r^3. r^4, r^5} is a subgroup, but you have r*r^5 = f. (etc) At least some of the f's in the chart should be e's.

-Dan
lol, boo-boo indeed! Any better now?

$$\begin{aligned} \begin{array}{cc|c|c|c|}
* && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f\\
\\
\hline
e && e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline
r && r & r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e \\
\hline
r^2 && r^2 & r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r \\
\hline
r^3 && r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 \\
\hline
r^4 && r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3\\
\hline
r^5 && r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 \\
\hline
f && f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 \\
\hline
rf && rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f\\
\hline
r^2f && r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf\\
\hline
r^3f && r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf & r^2f\\
\hline
r^4f && r^{4}f& r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf & r^2f & r^3 f\\
\hline
r^{5}f && r^{5}f & e & r & r^2 & r^3 &r^4 & r^5 & f & rf & r^2f & r^3 f & r^4f \\
\hline
&& & &
\hline
\end{array} \end{aligned}$$
 
Gah! You got the wrong f's! (Shake)

I mentioned r*r^5 = e. You still have it equal to f.

This is the {e, r, r^2, r^3, r^4, r^5} subgroup. It's cyclic so there should be no f's in there.
[math]
\begin{array}{c|c|c|c|c|c|c|}
* & e & r & r^2 & r^3 & r^4 & r^5 \\
\hline e & e & r & r^2 & r^3 & r^4 & r^5 \\
\hline r & r & r^2 & r^3 & r^4 & r^5 & e \\
\hline r^2 & r^2 & r^3 & r^4 & r^5 & e & r \\
\hline r^3 & r^3 & r^4 & r^5 & e & r & r^2 \\
\hline r^4 & r^4 & r^5 & e & r & r^2 & r^3 \\
\hline r^5 & r^5 & e & r & r^2 & r^3 & r^4 \\
\end{array}
[/math]

The f's you changed should be f's.

-Dan
 
The rest of the table isn't much better off...some things that are true in $D_6$:

A rotation times a rotation is a rotation (this is topsquark's sub-table).

A rotation times a reflection is a reflection.

A reflection times a reflection is a rotation.

All reflections have order 2.
 
Thanks @Deveno and @topsquark for the feedback. Here's take #3: $\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}
\circ & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline e & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline r & r & r^2 & r^3 & r ^4 & r ^5 & e & rf & r^2f & r^3f & r^4f & r^5f & f\\
\hline r^2 & r^2 & r^3 & r ^4 & r ^5 & e & r & r^2f & r^3f & r^4f & r^5f & f & rf\\
\hline r^3& r^3 & r ^4 & r ^5 & e & r & r^2 & r^3f & r^4f & r^5f & f & rf & r^2f\\
\hline r^4& r ^4 & r ^5 & e & r & r^2 & r^3 & r^4f & r^5f & f & rf & r^2f & r^3f\\
\hline r^5 & r ^5 & e & r & r^2 & r^3 & r^4 & r^5f & f & rf & r^2f & r^3f & r^4f\\
\hline f & f& rf& r^2f& r^3f& r^{4}f& r^{5}f & e & r & r^2 & r^3 & r^4 & r^5 \\
\hline rf & rf& r^2f& r^3f& r^{4}f& r^{5}f & f & r & r^2 & r^3 & r^4 & r^5 & e \\
\hline r^2f & r^2f& r^3f& r^{4}f & r^{5}f & f & rf & r^2 & r^3 & r^4 & r^5 & e & r \\
\hline r^3f & r^3f& r^{4}f& r^{5}f & f & rf & r^2f & r^3 & r^4 & r^5 & e & r & r^2 \\
\hline r^4f & r^{4}f& r^{5}f & f & rf & r^2f & r^3f & r^4 & r^5 & e & r & r^2 & r^3 \\
\hline r^5f & r^{5}f & f & rf & r^2f & r^3f & r^4f & r^5 & e & r & r^2 & r^3 & r^4 \\ \hline
\end{array}$
 
There is still quite a lot wrong. For a start, $r$ and $f$ do not commute. So you should not have the product $fr$ the same as $rf$. In fact, it should be $r^5f$. Also, you have not implemented Deveno's comment that all reflections have order 2. For example, $rf$ is a reflection, so $rf\,rf$ should be $e$.
 
Opalg said:
There is still quite a lot wrong. For a start, $r$ and $f$ do not commute. So you should not have the product $fr$ the same as $rf$. In fact, it should be $r^5f$. Also, you have not implemented Deveno's comment that all reflections have order 2. For example, $rf$ is a reflection, so $rf\,rf$ should be $e$.
Thanks for the feedback, Opalg. I tried to take all the suggestions into account, and here's what I get:
$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}
\circ & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline e & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline r & r & r^2 & r^3 & r ^4 & r ^5 & e & rf & r^2f & r^3f & r^4f & r^5f & f\\
\hline r^2 & r^2 & r^3 & r ^4 & r ^5 & e & r & r^2f & r^3f & r^4f & r^5f & f & rf\\
\hline r^3& r^3 & r ^4 & r ^5 & e & r & r^2 & r^3f & r^4f & r^5f & f & rf & r^2f\\
\hline r^4& r ^4 & r ^5 & e & r & r^2 & r^3 & r^4f & r^5f & f & rf & r^2f & r^3f\\
\hline r^5 & r ^5 & e & r & r^2 & r^3 & r^4 & r^5f & f & rf & r^2f & r^3f & r^4f\\
\hline f &f &r^5f & r^4f &r^3f &r^2f & rf& e& r^5& r^4 &r^3 &r^2 & r \\
\hline rf & rf & f & r^5 f & r^4f& r^3f & r^2f& r& e & r^5 & r^4 & r^3 & r^2 \\
\hline r^2f & r^2f & rf &f &r^5f & r^4f & r^3f &r^2 & r & e & r^5& r^4 & r^3 \\
\hline r^3f & r^3f & r^2f & rf& f & r^5f & r^4f& r^3& r^2 & r & e& r^5& r^4\\
\hline r^4f & r^4f & r^3f &r^2f &rf & f & r^5f & r^4 & r^3 & r^2& r&e & r^5\\
\hline r^5f & r^5f&r^4f & r^3f & r^2f &rf &f &r^5 &r^4 &r^3 &r^2 &r & e\\ \hline
\end{array}$$
 
Guest said:
Thanks for the feedback, Opalg. I tried to take all the suggestions into account, and here's what I get:
$$\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|}
\circ & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline e & e & r & r^2& r^3& r^4& r^5& f& rf& r^2f& r^3f& r^{4}f& r^{5}f \\
\hline r & r & r^2 & r^3 & r ^4 & r ^5 & e & rf & r^2f & r^3f & r^4f & r^5f & f\\
\hline r^2 & r^2 & r^3 & r ^4 & r ^5 & e & r & r^2f & r^3f & r^4f & r^5f & f & rf\\
\hline r^3& r^3 & r ^4 & r ^5 & e & r & r^2 & r^3f & r^4f & r^5f & f & rf & r^2f\\
\hline r^4& r ^4 & r ^5 & e & r & r^2 & r^3 & r^4f & r^5f & f & rf & r^2f & r^3f\\
\hline r^5 & r ^5 & e & r & r^2 & r^3 & r^4 & r^5f & f & rf & r^2f & r^3f & r^4f\\
\hline f &f &r^5f & r^4f &r^3f &r^2f & rf& e& r^5& r^4 &r^3 &r^2 & r \\
\hline rf & rf & f & r^5 f & r^4f& r^3f & r^2f& r& e & r^5 & r^4 & r^3 & r^2 \\
\hline r^2f & r^2f & rf &f &r^5f & r^4f & r^3f &r^2 & r & e & r^5& r^4 & r^3 \\
\hline r^3f & r^3f & r^2f & rf& f & r^5f & r^4f& r^3& r^2 & r & e& r^5& r^4\\
\hline r^4f & r^4f & r^3f &r^2f &rf & f & r^5f & r^4 & r^3 & r^2& r&e & r^5\\
\hline r^5f & r^5f&r^4f & r^3f & r^2f &rf &f &r^5 &r^4 &r^3 &r^2 &r & e\\ \hline
\end{array}$$

That looks correct (I honestly don't have time to verify all 144 products). There's a "trick" to this:

There is a rule for "getting the $r$'s in front":

$fr^k = r^{-k}f$.

Sometimes this is written as: $fr^kf = r^{-k}$, and can be proven by noting that:

$frf = frf^{-1}= r^{-1}$, and that:

$fr^kf = fr^kf^{-1} = (frf^{-1})(frf^{-1})\cdots(frf^{-1}) = (frf^{-1})^k = (frf)^k$.

(This same trick works for any dihedral group).

Notice that your Cayley table divides nicely into four 6x6 blocks, the northwest block is the subgroup table for the rotation subgroup $\langle r\rangle$, the northeast and southwest blocks can be taken as "representative" of $f\langle r\rangle$ as a whole (the "other" coset of $\langle r\rangle$ besides the rotation group itself), the southeast block represents my statement that "a reflection times a reflection is a rotation" -which you can see at a glance, since it has no $f$'s in it.

If we call the rotation group $R$, this gives us a "over-table" (whose elements are the 6x6 "blocks"):

$$\begin{array}{c|c|c|}
\circ&R&fR\\
\hline R&R&fR\\
\hline fR&fR&R\\ \hline
\end{array}$$

In other words, a visual demonstration that $D_4/R \cong C_2$ (a cyclic group of order 2).

Geometrically, $r$ is, of course, a rotation (typically counter-clockwise to agree with trigonometry), and $f$ is a "flip" about an agreed-upon axis between two opposite vertices or midpoints. If you *really* want to give yourself a work-out, you can try to think of 2x2 matrices that represent $r$ and $f$, and verify your Cayley table that way, as well (although this may seem like a lot of work, it is part of the process of creating a *character table*, something chemists actually use to classify molecular symmetry-$D_6$ is the symmetry group of the benzene molecule-which plays an important part in many organic compounds).

In any case, it is obvious that if you flip a hexagon, rotate it, and flip it again, the second flip means your rotation now counts in the opposite direction, which is why $frf = r^{-1}$ (because the "flipped plane" turns counter-clockwise to clockwise, and vice versa: it has the opposite *orientation*).
 
  • #10
Deveno said:
...
Many thanks, Deveno. From what you have said it seems there's all kinds of information encoded into the table!
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 26 ·
Replies
26
Views
814
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K