lets_resonate
- 15
- 0
Suppose you have a matrix A:
<br /> \left(<br /> \begin{array}{ccc}<br /> a_{1,1} & a_{1,2} & a_{1,3} \\<br /> a_{2,1} & a_{2,2} & a_{2,3} \\<br /> a_{3,1} & a_{3,2} & a_{3,3}<br /> \end{array}<br /> \right)<br />
And a matrix B:
<br /> \left(<br /> \begin{array}{ccc}<br /> b_{1,1} & b_{1,2} & b_{1,3} \\<br /> b_{2,1} & b_{2,2} & b_{2,3} \\<br /> b_{3,1} & b_{3,2} & b_{3,3}<br /> \end{array}<br /> \right)<br />
I want a product A \star B that would result in:
<br /> \left(<br /> \begin{array}{ccc}<br /> a_{1,1} b_{1,1} & a_{1,2} b_{1,2} & a_{1,3} b_{1,3} \\<br /> a_{2,1} b_{2,1} & a_{2,2} b_{2,2} & a_{2,3} b_{2,3} \\<br /> a_{3,1} b_{3,1} & a_{3,2} b_{3,2} & a_{3,3} b_{3,3}<br /> \end{array}<br /> \right)<br />
Does such a product exist? What would be the name of it?
<br /> \left(<br /> \begin{array}{ccc}<br /> a_{1,1} & a_{1,2} & a_{1,3} \\<br /> a_{2,1} & a_{2,2} & a_{2,3} \\<br /> a_{3,1} & a_{3,2} & a_{3,3}<br /> \end{array}<br /> \right)<br />
And a matrix B:
<br /> \left(<br /> \begin{array}{ccc}<br /> b_{1,1} & b_{1,2} & b_{1,3} \\<br /> b_{2,1} & b_{2,2} & b_{2,3} \\<br /> b_{3,1} & b_{3,2} & b_{3,3}<br /> \end{array}<br /> \right)<br />
I want a product A \star B that would result in:
<br /> \left(<br /> \begin{array}{ccc}<br /> a_{1,1} b_{1,1} & a_{1,2} b_{1,2} & a_{1,3} b_{1,3} \\<br /> a_{2,1} b_{2,1} & a_{2,2} b_{2,2} & a_{2,3} b_{2,3} \\<br /> a_{3,1} b_{3,1} & a_{3,2} b_{3,2} & a_{3,3} b_{3,3}<br /> \end{array}<br /> \right)<br />
Does such a product exist? What would be the name of it?