- #1

- 15

- 0

[tex]

\left(

\begin{array}{ccc}

a_{1,1} & a_{1,2} & a_{1,3} \\

a_{2,1} & a_{2,2} & a_{2,3} \\

a_{3,1} & a_{3,2} & a_{3,3}

\end{array}

\right)

[/tex]

And a matrix B:

[tex]

\left(

\begin{array}{ccc}

b_{1,1} & b_{1,2} & b_{1,3} \\

b_{2,1} & b_{2,2} & b_{2,3} \\

b_{3,1} & b_{3,2} & b_{3,3}

\end{array}

\right)

[/tex]

I want a product [itex]A \star B[/itex] that would result in:

[tex]

\left(

\begin{array}{ccc}

a_{1,1} b_{1,1} & a_{1,2} b_{1,2} & a_{1,3} b_{1,3} \\

a_{2,1} b_{2,1} & a_{2,2} b_{2,2} & a_{2,3} b_{2,3} \\

a_{3,1} b_{3,1} & a_{3,2} b_{3,2} & a_{3,3} b_{3,3}

\end{array}

\right)

[/tex]

Does such a product exist? What would be the name of it?