(adsbygoogle = window.adsbygoogle || []).push({}); 1. an= [(2^n)(n!) + 1]/(n^n)

At first glance, I thought it would be a convergent sequence because of the (n^n) in the denominator. But after trying and not being able to show its convergence, I compared it to (2/n)^n with the squeeze theorem. (Basically inf > an > (2/n)^n)

I set the limit as n approaches inf, took the natural log and put 1/2n as the denominator. I used the L'Hopital method and got to lim e^((-2/n^2)(n/2)/(-1/n^2)), which canceled out to lim e^n.

I concluded that the sequence diverges. Did I do this correctly? This problem's been bugging me for two days now. Guidance please!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Does this sequence converge or diverge?

**Physics Forums | Science Articles, Homework Help, Discussion**