Domenic's question at Yahoo Answers regarding computing the work to empty a tank

Click For Summary
SUMMARY

The discussion centers on calculating the work required to pump oil from a conical tank with a height of 16 feet and a radius of 8 feet, containing oil that weighs 55 pounds per cubic foot. The oil is initially at half capacity, and the outlet is positioned 3 feet above the tank's top. The derived formula for work (W) is W = (ρπhkr²/12)(4(h+z) - 3h√[3]{k}), leading to a calculated work of approximately 190,959.32 ft·lb.

PREREQUISITES
  • Understanding of calculus, specifically integration techniques.
  • Familiarity with the concept of work in physics (force times distance).
  • Knowledge of the properties of conical shapes and volume calculations.
  • Basic understanding of weight density and its application in fluid mechanics.
NEXT STEPS
  • Study the principles of fluid mechanics, focusing on buoyancy and hydrostatic pressure.
  • Learn about integration techniques in calculus, particularly for calculating volumes and work.
  • Explore applications of conical shapes in engineering and design.
  • Investigate real-world scenarios involving fluid pumping systems and their efficiency calculations.
USEFUL FOR

Students and professionals in engineering, physics, and mathematics, particularly those focusing on fluid dynamics and work calculations in mechanical systems.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Calculus II question?? Work/pumping fluids? HELP!?


A tank containing oil is in the shape of a downward-pointing cone with its vertical axis perpendicular to ground level. In this exercise we will assume that the height of the tank is h=16 feet , the circular top of the tank has radius r=8 feet, and that the oil inside the tank weighs 55 pounds per cubic foot.
How much work (W) does it take to pump oil from the tank to an outlet that is 3 feet above the top of the tank if, prior to pumping, there is only a half-tank of oil? Note: "half-tank" means half the volume in the tank.
Note: For this problem a pound is to be taken as a unit of weight (not of mass), so it is not necessary to multiply by the gravitational acceleration constant in order to find the work.

PLEASE HELP. Thank you

I have posted a link there to this thread so the OP can view my work.
 
Physics news on Phys.org
Hello domenic,

I prefer to work problems like this in general terms, and derive a formula we may then plug our data into. Let's let the base radius of the conical tank be $r$, and the height be $h$.

Let's orient a vertical $y$-axis along the axis of symmetry of the tank, where the origin is at the bottom of the tank, and the initial depth of the fluid in the tank is $y_0$. We wish to find the amount of work $W$ is needed to pump all of the fluid to a point some distance $z$ above the top of the tank.

Now, if we imagine slicing the cone of fluid we wish to remove into disks, we may state, using work is force $F$ times distance $d$ for a constant force:

$$dW=Fd=wd$$

The force exerted is equal to the weight $w$ of the slice.

The weight $w$ of the slice is the product of the weight density $\rho$ in [math]\frac{\text{lb}}{\text{ft}^3}[/math], and the volume [math]V=\pi r_s^2\,dy[/math] of the slice, i.e.:

$w=\rho\pi r_s^2\,dy$

The radius of the slice can be found by similarity.

$$\frac{r_s}{y}=\frac{r}{h}\,\therefore\,r_s=\frac{r}{h}y$$

The distance the slice must be vertically moved against gravity is:

$d=h+z-y$

Putting it all together, we have:

$$dW=\frac{\rho\pi r^2}{h^2}\left(hy^2+zy^2-y^3 \right)\,dy$$

Summing up all the work elements through integration, we obtain:

$$W=\frac{\rho\pi r^2}{h^2}\int_0^{y_0} (h+z)y^2-y^3\,dy$$

Applying the anti-derivative form of the FTOC, there results:

$$W=\frac{\rho\pi r^2}{12h^2}\left[4(h+z)y^3-3y^4 \right]_0^{y_0}=\frac{\rho\pi r^2y_0^3}{12h^2}\left(4(h+z)-3y_0 \right)$$

Now, if $V$ is the volume of the tank, let $kV$ be the initial volume of fluid in the tank, where $0\le k\le1$. To find the initial depth $y_0$ of the fluid in terms of $k$, we may use:

$$\pi\left(\frac{r}{h}y_0 \right)^2y_0=k\pi r^2h$$

$$y_0^3=kh^3$$

$$y_0=h\sqrt[3]{k}$$

Hence:

$$W=\frac{\rho\pi hkr^2}{12}\left(4(h+z)-3h\sqrt[3]{k} \right)$$

We now have a formula into which we may plug the given and known data:

$$\rho=55\,\frac{\text{lb}}{\text{ft}^3}$$

$$h=16\text{ ft}$$

$$k=\frac{1}{2}$$

$$r=8\text{ ft}$$

$$z=3\text{ ft}$$

And so we find for this problem:

$$W=\frac{\left(55\,\dfrac{\text{lb}}{\text{ft}^3} \right)\pi \left(16\text{ ft} \right)\left(\dfrac{1}{2} \right)\left(8\text{ ft} \right)^2}{12}\left(4(16+3)-3(16)\sqrt[3]{\frac{1}{2}} \right)\text{ ft}=\frac{28160\pi}{3}\left(19-6\sqrt[3]{4} \right)\text{ ft}\cdot\text{lb}$$

$$W\approx190959.32\text{ ft}\cdot\text{lb}$$
 

Similar threads

Replies
1
Views
4K
Replies
1
Views
21K
Replies
1
Views
2K
Replies
1
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 56 ·
2
Replies
56
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K