Using Inner Product Properties to Solve Vector Problems

Click For Summary
SUMMARY

The discussion centers on solving vector problems using inner product properties, specifically with unit vectors a, b, and c, where a⋅b=1/4, b⋅c=1/7, and a⋅c=1/8. The user initially attempted to manipulate these dot products to isolate the magnitude of vector a but received feedback indicating a misunderstanding of the dot product's properties. The correct approach involves applying the linearity of the inner product and recognizing that all vectors are unit vectors, which simplifies the calculations significantly.

PREREQUISITES
  • Understanding of unit vectors and their properties
  • Familiarity with the dot product and its properties
  • Knowledge of vector operations and linearity in inner products
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the properties of the dot product, including commutativity and distributivity
  • Learn how to evaluate vector magnitudes and their implications in vector spaces
  • Explore examples of inner product spaces and their applications in physics
  • Practice solving vector problems involving multiple unit vectors
USEFUL FOR

Students studying linear algebra, mathematicians, and anyone interested in vector calculus and its applications in physics and engineering.

Blackbear38
Messages
1
Reaction score
0
Summary:: I need to solve a problem for an assignment but just couldn't find the right approach. I fail to eliminate b or c to get only the magnitude of a.

Let a, b and c be unit vectors such that a⋅b=1/4, b⋅c=1/7 and a⋅c=1/8. Evaluate (write in the exact form):
- ||4a||
- 3a.5b
- a.(b-c)
- (a+b+c).(a-b)

What I first did was ab.ac = a^(2).bc then substitute values of ab, ac, and bc, but I cannot confirm that this is the correct approach. Hence, I found:

ab.ac = a^(2).bc
(1/4)(1/8)=a^(2)(1/7)
a^(2) = 7/32
Hence, ||a|| = sqrt(14)/8

I really hope that this doubt can be clarified for all the parts of my question. Thanks!

[Moderator's note: moved from a technical forum.]
 
Physics news on Phys.org
What you need to know is

a is a unit vector, so what is its magnitude?
scalars and vectors are commutative.
The scalar product is commutative and distributive.

The rest is given.
 
Blackbear38 said:
Summary:: I need to solve a problem for an assignment but just couldn't find the right approach. I fail to eliminate b or c to get only the magnitude of a.

Let a, b and c be unit vectors such that a⋅b=1/4, b⋅c=1/7 and a⋅c=1/8. Evaluate (write in the exact form):
- ||4a||
- 3a.5b
- a.(b-c)
- (a+b+c).(a-b)

What I first did was ab.ac = a^(2).bc
I have no idea why you did this, and if '.' means "dot product" the above makes no sense.
##a \cdot b## is a number (given) and ##a \cdot c## is also a number (also given). The dot product is defined for vectors, but not plain old numbers.
Blackbear38 said:
Then substitute values of ab, ac, and bc, but I cannot confirm that this is the correct approach.
It's not.
Blackbear38 said:
Hence, I found:

ab.ac = a^(2).bc
(1/4)(1/8)=a^(2)(1/7)
a^(2) = 7/32
Hence, ||a|| = sqrt(14)/8

I really hope that this doubt can be clarified for all the parts of my question. Thanks!

[Moderator's note: moved from a technical forum.]
Following up on @gleem's comments, you need to be looking at the properties of the dot product, such as ##ku \cdot v = k u \cdot v## and ##u \cdot (v +w) = u \cdot v + u \cdot w##, etc. This is a very easy set of problems if you know these properties, plus the fact that a, b, and c are all unit vectors.
 
Sorry for this question but are you sure you know what a unit vector is?
 
You need to rely more on the basic properties of the inner product. The inner product is linear in both its arguments for real scalars. That should give you almost all the answers.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
4K
Replies
6
Views
1K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K