MHB Drawing a pre-defined triangle that touches 3 pre-defined lines at all 3 points

AI Thread Summary
The discussion revolves around a general contractor seeking help to position a predefined triangle so that its three points touch three specific lines. The contractor is not highly advanced in mathematics and prefers practical, intuitive methods rather than complex formulas. Responses indicate that while some mathematical equations can be derived to solve the problem, they may not align with the contractor's desire for a simpler, more hands-on approach. Ultimately, the consensus is that solving the problem effectively requires a mathematical foundation that may not be easily simplified to basic geometric tools. The contractor is encouraged to consider the complexity of the task and the limitations of using only basic drawing methods.
Alaskan Son
Messages
13
Reaction score
0
This is my first time posting here so please forgive me any indiscretions...

I'm actually not a student. I'm a general contractor. Part of what I do for a living is draw plans, and that quite often involves geometrical and trigonometrical type challenges. For the most part, I'm usually able to get them figured out, but this one has me stumped, and I didn't know where else to go for help. What I'm trying to do is this:

I would like to know the easiest and most intuitive way to figure out how to take a pre-defined triangle and position it so that the 3 points perfectly contact the 3 lines...
View attachment 8170

I'm not super advanced mathematically speaking. I usually just draw circles and lines to figure stuff like this out, but this one has just proven to be more than I can handle. Any help anyone could give me, and in the simplest terms possible, would be absolutely appreciated. Thank you so much for your time.

Michael
 

Attachments

  • Pic 1.jpg
    Pic 1.jpg
    24.6 KB · Views: 133
Mathematics news on Phys.org
Hi Michael and welcome to MHB! (Wave)

Can we assume that the size of the triangle is fixed?
And that the distance between lines A and B along line C is also fixed?
 
I like Serena said:
Hi Michael and welcome to MHB! (Wave)

Can we assume that the size of the triangle is fixed?
And that the distance between lines A and B along line C is also fixed?
That is correct.
 
Alaskan Son said:
That is correct.

Suppose we label those fixed lengths with $a$, $b$, and $c$ as in the following diagram.
\begin{tikzpicture}[>=stealth]
\draw rectangle (0.3,0.3);
\draw[shift={(1,0)},rotate=atan(1/2)] rectangle (0.3,0.3);
\draw[ultra thick] (-2,0) -- (8,0);
\draw[ultra thick] (0,-3) -- (0,6);
\draw[ultra thick] (5,-3) -- (8,6);
\draw[ultra thick] (0,2) -- node
{a} (1,0) -- node[above left] {b} (7,3) -- cycle;
\draw[gray] (7,0) -- (7,3);
\path[gray] (0,0) -- node[below] {x} (1,0) -- node[below] {c-x} (6,0) -- (7,0) -- node
{y} (7,3);
\path (0,0) -- node[below,yshift=-8] {c} (6,0);
\path (1,0) +({atan(1/2)/2}:0.8) node {$\phi$};
\path (0,2) +({270+atan(1/2)/2}:0.8) node {$\phi$};
\path (6,0) node[above left] {F};
\draw[<->] (6,0) +(-0.8,0) arc (180:atan(3):0.8);
\end{tikzpicture}

And let's define $x$, $y$, and $\phi$ as in the diagram as well.

Now let me run through the steps and I suggest you ask for clarification for steps that you don't understand.

We can set up a system of equations based on trigonometry:
\begin{cases}a\sin\phi = x \\ b\sin\phi = y \\ b\cos\phi = (c-x) + y\cdot\cot(\pi-F)\end{cases}

It follows that:
$$\sin\phi=\frac yb \\ x=a\cdot\frac yb \\ \cos\phi= \sqrt{1-\sin^2\phi}=\sqrt{1-\frac{y^2}{b^2}} \\
\cot(\pi-F)=-\cot F
$$
If we substitute that in the 3rd equation we get:
$$b\sqrt{1-\frac{y^2}{b^2}}=c-a\cdot\frac yb-y\cdot\cot F \quad\Rightarrow\\
b^2-y^2=\left(c-\left(\frac ab+\cot F\right)y\right)^2 = c^2 -2c\left(\frac ab+\cot F\right)y + \left(\frac ab+\cot F\right)^2y^2 \quad\Rightarrow\\
\left(\left(\frac ab+\cot F\right)^2+1\right)y^2 -2c\left(\frac ab+\cot F\right)y + (c^2 - b^2)=0\\
$$
This is a quadratic equation in $y$ that we can solve with the quadratic formula.
After that we can also find $x$ and $\phi$ with the earlier formulas.How much did you get?
Is it something like this that you are looking for?​
 
I like Serena said:
How much did you get?
Is it something like this that you are looking for?

I am totally appreciative of the time you've taken. Thank you so much, but essentially I got none of it. I think I was hoping for some direction that was a little more practical and a little more physically based (for lack of better terms)--something I could do with the square, protractor, and pencil up in the right hand corner of this forum...maybe with a few minor calculations, but not so formula based. Maybe this will give you a little better idea...

I make tutorial videos for the software I use. Here are a few I've made for some geometrical challenges. I'm sure it's all pretty elementary stuff as far as you fine folks here are concerned, but this is the type of level I'm at, and the way that I think...

[YOUTUBE]IaDsqN3_VUE[/YOUTUBE]
[YOUTUBE]9hHWqtj5yBU[/YOUTUBE]
[YOUTUBE]acIaURApJzI[/YOUTUBE]...now I imagine there are some pretty complex looking formulas to describe what I've illustrated in the videos too, but what I was hoping for was something along the lines of what I've shown (draw a circle from here to here, rotate around point b, draw a line from here to here, subtract this from this, etc.). I don't know, maybe the example I've put forth is too complex for that sort of approach.

Anyway, hopefully that made sense. I apologize if my level of mathematical understanding is a bit too basic for the forum. I'd still appreciate any help I could get to simply this challenge so that I could approach it a little easier using the tools I currently have at my disposal and without going through a major re-education. If I'm being unrealistic, please let me know. Thanks again for your time.

Michael
 
Last edited:
I am sorry, I do not know of any way to solve your problem statement with just circles and lines.
Thank you for your videos though. They are quite instructive.
Either way, I only know how to solve your problem with equations of the appropriate unknowns and their solution.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
2
Views
2K
Replies
6
Views
3K
Replies
2
Views
1K
Replies
5
Views
2K
Replies
7
Views
3K
Replies
8
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Back
Top