Drawing Light Beam Reflected in Mirror: A & B's Analysis

  • Thread starter Thread starter PintoCorreia
  • Start date Start date
  • Tags Tags
    Mirror
Click For Summary
SUMMARY

The discussion focuses on the geometric principles of light reflection in mirrors, specifically analyzing the paths of light from Object A to eye B and vice versa. Participants confirm that the angles of incidence and reflection are equal, adhering to the mirror reflection rules. They explore the implications of using points A' and B' behind the mirror, concluding that similar geometric arguments apply to both scenarios. The necessity of proving similarity or congruence among triangles formed by these light paths is debated, with references to established geometric properties.

PREREQUISITES
  • Understanding of basic geometric principles, including angles of incidence and reflection.
  • Familiarity with the concept of similar triangles and congruence in geometry.
  • Knowledge of the mirror reflection rules as applied in optics.
  • Ability to interpret and construct geometric proofs.
NEXT STEPS
  • Study the properties of similar triangles in geometry.
  • Learn about the laws of reflection and their applications in optics.
  • Explore geometric proof techniques, focusing on angle relationships.
  • Investigate the concept of vertical angles and their relevance in geometric proofs.
USEFUL FOR

Students studying geometry, physics enthusiasts interested in optics, and educators seeking to enhance their teaching of reflection principles.

PintoCorreia
Messages
19
Reaction score
0

Homework Statement



A. Draw accurately in the figure the light beam that goes from Object A to eye B after being reflected on the mirror. It must be consistent with the mirror principle!

jZyaqdH.png


B. At question A. you may have connected the point behind the mirror (A') with eye B.
And found the correct light path that way.

b. Will that also work if you use the point behind the mirror of B (B') instead? Do you get the same result?
Use mathematical arguments for your judgement!

Homework Equations


mirror reflection rules

The Attempt at a Solution



Question A:
I tried to draw point A' and connected that to B. The purple line is the normal line (the imaginary line that is perpendicular to the mirror) And the angle between the mirror and A is the same as the angle between the mirror and B.

XIVwfYH.png


Question B: I think this is true, I can draw the same lines, but I don't know what is meant by 'mathematical arguments'
 
Physics news on Phys.org
When they say use mathematical arguments, they mean to use what you know about geometry. Call the point where the ray strikes the mirror point M. For part a, you can show that since the angle between line segment MA and the mirror is the same as the angle between line segment MA' and the mirror, it must be true from basic geometry that the angle between segment MB and the mirror is the same as these other two angles.

What if you drew the line segment going to B' instead? How would this argument go?
 
-So do you need to proof similarity or congruence?

I guess You can show that the angle between line segment MB and the mirror is the same as the angle between line segment MB' and the mirror.

"it must be true from basic geometry that the angle between segment MB and the mirror is the same as these other two angles." Don't you mean those 3 other angles? Since there are 4 angles in total and you only mentioned the one between MB and the mirror.

cepheid said:
When they say use mathematical arguments, they mean to use what you know about geometry. Call the point where the ray strikes the mirror point M. For part a, you can show that since the angle between line segment MA and the mirror is the same as the angle between line segment MA' and the mirror, it must be true from basic geometry that the angle between segment MB and the mirror is the same as these other two angles.

What if you drew the line segment going to B' instead? How would this argument go?
 
PintoCorreia said:
-So do you need to proof similarity or congruence?

I guess You can show that the angle between line segment MB and the mirror is the same as the angle between line segment MB' and the mirror.

"it must be true from basic geometry that the angle between segment MB and the mirror is the same as these other two angles." Don't you mean those 3 other angles? Since there are 4 angles in total and you only mentioned the one between MB and the mirror.

Huh? I explicitly mentioned three angles in my post:

1. Angle between segment MA and mirror
2. Angle between segment MA' and mirror
3. Angle between segment MB and mirror

What I was saying was that for part A, you can use geometry to show that the third one in the list is equal to the first two (which were "those other two angles").
 
How many similarity proofs do you need? Do you to proof that all 4 triangles are similar? (A-mirror-M is similar to A'-mirror-M is similar to B-mirror-M is similar to B'-mirror-M) Or can you do it in less steps?
 
Well you can prove that triangle A-mirror-M is similar to triangle A'-mirror-M, and that's how you know that the angle between segment MA and the mirror equals the angle between segment MA' and the mirror.

However, I don't think you need a similarity proof for the last bit, because you have this property:
http://en.wikipedia.org/wiki/Vertical_angles

I don't even know whether your teacher wants a rigorous geometric proof or not. It might be sufficient to just state that these angles are equal (EDIT because this is a known result of geometry)

The real point I was trying to make in my first post was just that if you draw the point at B' instead of A', you can still use the exact same sequence of arguments to show that angle of incidence = angle of reflection.
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
Replies
14
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K