Driving force from buzzer for jacket of length L

  • Thread starter Thread starter member 731016
  • Start date Start date
  • Tags Tags
    Force Length
AI Thread Summary
The discussion centers on understanding the timing of a buzzer's vibrations in relation to its driving force on a jacket of length L. It highlights the concept of resonance, where the buzzer's vibrations can reinforce the motion of the jacket. Due to energy losses in the swinging cloth, there is a phase lag, meaning the cloth's response is slightly delayed compared to the buzzer's vibrations. This phase lag results in a continuous reinforcement of the driving force. The interaction between the buzzer and the jacket exemplifies the principles of resonance in physical systems.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1675720775912.png

How do we tell when the buzzer vibrates during the cycle to provide the driving force?

Many thanks!
 
Physics news on Phys.org
Callumnc1 said:
How do we tell when the buzzer vibrates during the cycle to provide the driving force?
It's an example of resonance. https://en.wikipedia.org/wiki/Resonance.
Because there are losses in the swinging cloth, it will always be a bit behind the source of vibration (phase lag). As a result, the impetus from the source is reinforcing.
 
  • Like
Likes member 731016
haruspex said:
It's an example of resonance. https://en.wikipedia.org/wiki/Resonance.
Because there are losses in the swinging cloth, it will always be a bit behind the source of vibration (phase lag). As a result, the impetus from the source is reinforcing.
Thank you for your reply @haruspex !
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top