I Drude model with and without an electric field

AI Thread Summary
In the Drude model, without an electric field, electrons do not transfer energy to ions because they reach equilibrium after collisions, balancing energy gained and lost. When an electric field is applied, electrons gain kinetic energy between collisions, allowing them to transfer energy to lattice ions. This energy transfer corresponds to the work done by the electric field on the electrons. The average velocity of electrons, known as drift velocity, results from these interactions, described by a linear friction term in their motion equations. Thus, the presence of an electric field is crucial for energy transfer in the Drude model.
aaronll
Messages
23
Reaction score
4
Why in the Drude model without e-field no energy is transfer by electrons to ions, but when there is an e-field electrons transfer energy to ions ?
 
Physics news on Phys.org
aaronll said:
Why in the Drude model without e-field no energy is transfer by electrons to ions
What, precisely, gives you that impression ?
One of the assumptions says
The electron is considered to be immediately at equilibrium with the local temperature after a collision.
i.e. the electrons pick up just as much energy as they lose.

##\ ##
 
  • Like
Likes Lord Jestocost
BvU said:
What, precisely, gives you that impression ?
One of the assumptions says i.e. the electrons pick up just as much energy as they lose.

##\
that is clear, right, so with an electric field electron gain energy between collision and they transfer energy (kinetic energy) to lattice ion, and that energy is equal to the work done by the e-field on the electron?
So in "reality" electron gains velocity between collision but they lose that energy in collision and on average the velocity is the drift velocity?
 
It's an effective description of an electron in the medium. The interaction with the medium is described by a linear friction term and thus the equation of motion for the electron reads
$$m \dot{\vec{v}}=-\frac{m}{\tau} \vec{v}-e \vec{E}.$$
If ##\tau## is small enough the velocity "relaxes" quickly to the equilibrium limit, where the force vanishes, i.e.,
$$\vec{v}=-\frac{e \tau}{m} \vec{E}.$$
Now for DC you assume the electrons within the conductor are all independent and then the relation to the elctric current is
$$\vec{j}=-e n \vec{v}=\frac{e^2 n \tau}{m} \vec{E} \; \Rightarrow \; \sigma=\frac{e^2 n \tau}{m}.$$
 
Thread 'Inducing EMF Through a Coil: Understanding Flux'
Thank you for reading my post. I can understand why a change in magnetic flux through a conducting surface would induce an emf, but how does this work when inducing an emf through a coil? How does the flux through the empty space between the wires have an effect on the electrons in the wire itself? In the image below is a coil with a magnetic field going through the space between the wires but not necessarily through the wires themselves. Thank you.
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (Second part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8. I want to understand some issues more correctly. It's a little bit difficult to understand now. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. In the page 196, in the first paragraph, the author argues as follows ...
Back
Top