I was reading about dual spaces and dual bases in the book Linear Algebra by Friedberg, Spence and Insel (FSI) and they give an example of a linear functional, f_i (x) = a_i where [x]_β = [a_1 a_2 ... a_n] denotes the matrix representation of x in terms of the basis β = {x_1, x_2, ..., x_n} of V. Now they go on to prove that {f_1, f_2, ..., f_n} is in fact the dual basis of β for V* by actually never using the fact that f_i (x) = a_i, but rather that f_i (x_j) = δ_ij, where δ_ij denotes the Kronecker delta function. I also happened to have read other references by Halmos and Lang and they did not go about actually finding the linear functionals, but rather use the fact that a linear functional that satisfies φ_i (x_j) = δ_ij exists. Now I suppose my question is, doesn't it so happen that the dual basis of β ALWAYS equals {f_1, f_2, ..., f_n} as defined by FSI? Because since φ and f agree on the basis elements in turns out that φ_i = f_i for all x.(adsbygoogle = window.adsbygoogle || []).push({});

Now here is where differential forms come in. I was reading do Carmo's book on Differential forms and he says that the basis of R³ is {dx_i; i = 1,2,3} where x_i represents the i-th coordinate function. So I guess its true that dx_i = f_i(x) from above then right? I, to be honest, find this a bit unexpected as x_i is precisely f_i when we're using the canonical basis, yet differentiating doesn't mess it up. So I actually went on to check it on some values that dx_i really does equal f_i(x). And so it seems to also verify what I was asking in the first paragraph.

Is this all right? I'd appreciate someone clarifying some of this stuff to me.

Thanks!

EDIT: I guess another way of putting my question is, is the dual basis unique, in the sense that the linear functionals that form the basis are always identically equal to f_i(x) as given by FSI?

**Physics Forums - The Fusion of Science and Community**

# Dual basis and differential forms...

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Dual basis and differential forms...

Loading...

**Physics Forums - The Fusion of Science and Community**