- #1

- 28

- 0

M(x,t)=Q(0,t)*x+integral{q(x,t)-mass*acceleration(x,t)}*(L-x)dx

where

M(x,t)= dynamic moment.

Q(0,t)=shear at x=0.

q(x,t)= external dynamic loading.

mass*accel.(x,t)= inertia force.

- Thread starter omarxx84
- Start date

- #1

- 28

- 0

M(x,t)=Q(0,t)*x+integral{q(x,t)-mass*acceleration(x,t)}*(L-x)dx

where

M(x,t)= dynamic moment.

Q(0,t)=shear at x=0.

q(x,t)= external dynamic loading.

mass*accel.(x,t)= inertia force.

- #2

- 28

- 0

hi colleages....is the equation below represent a dynamic equilibrium of vibrated beam-column member and simple boundary conditions???

M(x,t)=Q(0,t)*x+integral{q(x,t)-mass*acceleration(x,t)}*(L-x)dx

where

M(x,t)= dynamic moment.

Q(0,t)=shear at x=0.

q(x,t)= external dynamic loading.

mass*accel.(x,t)= inertia force.

- Last Post

- Replies
- 3

- Views
- 11K

- Last Post

- Replies
- 11

- Views
- 2K

- Last Post

- Replies
- 1

- Views
- 1K

- Replies
- 1

- Views
- 3K

- Replies
- 1

- Views
- 13K

- Last Post

- Replies
- 1

- Views
- 749

- Last Post

- Replies
- 4

- Views
- 2K

- Last Post

- Replies
- 1

- Views
- 4K

- Last Post

- Replies
- 3

- Views
- 845

- Replies
- 2

- Views
- 5K