Effect of temperature change in Le Chatelier's Principle

Click For Summary
SUMMARY

The discussion focuses on the effect of temperature change on Le Chatelier's Principle, specifically through the equation $$ \log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] $$, which relates the change in equilibrium constants to temperature. Participants emphasize the importance of understanding the derivation of this equation and its connection to the Clausius-Clapeyron equation. The discussion highlights the necessity of grasping these concepts to effectively analyze equilibrium shifts due to temperature variations.

PREREQUISITES
  • Understanding of Le Chatelier's Principle
  • Familiarity with equilibrium constants (K1 and K2)
  • Knowledge of thermodynamics, specifically enthalpy changes (ΔH)
  • Basic grasp of the Clausius-Clapeyron equation
NEXT STEPS
  • Study the derivation of the equation $$ \log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] $$ in detail
  • Explore the Clausius-Clapeyron equation and its applications in chemical thermodynamics
  • Investigate the relationship between temperature changes and reaction shifts in various chemical systems
  • Review case studies demonstrating practical applications of Le Chatelier's Principle in industrial processes
USEFUL FOR

Chemistry students, chemical engineers, and researchers interested in thermodynamics and chemical equilibrium analysis will benefit from this discussion.

Huzaifa
Messages
40
Reaction score
2
Homework Statement
How to derive $$
\log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]
$$
Relevant Equations
$$
\log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right]
$$
The effect of temperature change in Le Chatelier's Principle is given by the equation $$ \log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] $$. How to derive $$ \log \left(\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}\right)=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left[\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right] $$. I am not able to derive it as equilibrium constant changes.
 
Physics news on Phys.org
Google for Clausius-Clapeyron equation.
 
  • Like
Likes   Reactions: Bystander
2021_12_17_f25eb23aa3c6eec50d16g-1.jpg
 

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K