This is a concept question..(adsbygoogle = window.adsbygoogle || []).push({});

I'm having trouble understanding why for an n x n matrix A, in order to have eigenvalues, it must have linearly dependent columns (so that a nontrivial solution exists), but for the same A, in order to be diagonalizable, the columns must be linearly INdependent.

The basis for the eigenspace of the former would be the null space, but for the latter, the basis would be the column space since no free variables exist.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Eigenvalues and diagonalizability

**Physics Forums | Science Articles, Homework Help, Discussion**