MHB Eigenvalues are real numbers and satisfy inequality

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $A$ be a $n \times n$ complex unitary matrix. I want to show that the eigenvalues $\lambda$ of the matrix $A+A^{\star}$ are real numbers that satisfy the relation $-2 \leq \lambda \leq 2$.

I have looked up the definitions and I read that a unitary matrix is a square matrix for which $AA^{+}=I$.

(The transpose matrix of $A^{\star}$ is symbolized with $A^{+}$.)

($A^{\star}$: complex conjugate)In order to show that the eigenvalues $\lambda$ of the matrix $A+A^{\star}$ are real numbers and satisfy that $-2 \leq \lambda \leq 2$, do we maybe have to find the minimal polynomial of the matrix $A+A^{\star}$ ? If so, how? Is there a relation? Or do we have to do it somehow else? (Thinking)
 
Physics news on Phys.org
Hey evinda!

Suppose we pick $A=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix}$.
Then aren't the eigenvalues of $A+A^*$ imaginary? (Worried)

Can it be that $A+A^+$ was intended?

To find an upper magnitude of 2, did you consider that $\|A\mathbf x\| = \|\mathbf x\|$, which is a property of a unitary matrix? (Wondering)
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top