Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Eigenvalues/Vectors with bizarre 3x3 matrix

  1. Oct 30, 2011 #1
    1. The problem statement, all variables and given/known data

    Let B :=
    2 1 5
    0 2 3
    0 0 2

    . [Hint: Write B as a diag-matrix
    plus a nilpotent matrix.]

    Then B^2005 = ?

    2. Relevant equations

    3. The attempt at a solution

    so i found the eigenvalue to be 2, with a multiplicity of 3. When plugging the eigenvalue back into B, the original matrix, im left with all zeros except for a 1 in top row 2nd column, a 5 next to it on right, and a 3 below the 5. Thus i figured 3x3 must = 0, thus x3=0. and this x2 =0, and no eigenvectors. So IDK what to do..

    i took the hint, and made it the diag matrix with 2s for each entry of hte 3x3 matrix. the nilpotent thus is the remaining terms, which goes to zero for the matrix cubed.

    nevermind i got it. thanks anyway yall
    Last edited: Oct 30, 2011
  2. jcsd
  3. Oct 30, 2011 #2

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper

    No probs - well done:
    BTW: wot he said (below)
    Last edited: Oct 30, 2011
  4. Oct 30, 2011 #3


    User Avatar
    Homework Helper

    =b^2005+2005 d^2004 n+2009010d^2003 n^2+1341349010d^2002 n^3+...
  5. Oct 30, 2011 #4
    Yeah remember B and d commute.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook