I Einstein summation convention confusion

dyn
Messages
774
Reaction score
63
Hi
If i have a vector r = ( x1 , x2 , x3) then i can write r2 as xixi where the i is summed over because it occurs twice. Now is xixi the same as xi2 ? I have come across an example where they are used as equivalent but i am confused because xi2 seems to be the square of just one component of r but xi2 also seems to be logically the same as xixi

My other question is ; are there some quantities that cannot be written in summation convention ? Such the kinetic energy of many particles . I have seen it written using sigma notation as the sum over k from 1 to N as mkvkvk but obviously k appears 3 times here. This applies to small oscillations where the rk is differentiated with respect to different variables . Are some quantities impossible to write in summation convention ?

Thanks
 
Mathematics news on Phys.org
My understanding of the Einstein convention is that it would be xixi.
 
  • Like
Likes dextercioby
Thanks. My questions are just in reference to classical mechanics so in both questions i have asked all indices are lower indices
 
Use whatever can be read unambiguously without confusing the reader too much. I wouldn't expect the Einstein sum convention in classical mechanics at all, so a footnote or other comment would be useful anyway. Specify how you want to use it there.
 
I think a lot of this depends on context too. If you wrote ##y_i=x_i^2## it's pretty clear you're not summing, and if you write ##y=x_i^2## then you are. Assuming the book doesn't have a typo 😬
 
dyn said:
My other question is ; are there some quantities that cannot be written in summation convention ? Such the kinetic energy of many particles . I have seen it written using sigma notation as the sum over k from 1 to N as mkvkvk but obviously k appears 3 times here. This applies to small oscillations where the rk is differentiated with respect to different variables . Are some quantities impossible to write in summation convention ?
Because the convention assumes the universal quantifier, it can't express the existential quantifier. You can't say: $$\exists i: x_i = y_i$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top