Aether
Gold Member
- 714
- 2
Do you still believe this, pervect? If so, could you please show a simple example using the transformation equations that I posted in message #92 of the "consistency of the speed of light" thread? How is p=mv affected by the choice of one clock synchronization convention over another? We can measure v using round-trip light signals which are isotropic regardless of one's choice of clock synchronization convention.pervect said:False.
There is an extremely good basis for preferring Einstein's convention. This is the conservation and isotropy of momentum.
The primary reason to synchronize clocks is to be able to measure velocities. When we demand that an object of mass m and velocity v moving north have an equal and opposite momentum to an object of mass m and velocity v moving south, we require Einsteinan clock synchronization.
Empirically, this means that we require an two objects of equal masses moving at the same speed in opposite directions to stop when they collide inelastically.
It is indeed *possible* to use non-Einsteinain clock synchronizations, and under some circumstances it is more-or-less forced on us. In such circumstances, one must not remember that momentum is not isotropic.
Note that Newton's laws assume that momentum is isotropic (an isotropic function of velocity). Therfore Newton's laws (with the definition of momentum as p=mv) cannot be used unless Einstein's clock synchronization is used. Some other definition of momentum other than p=mv must be used if it is to remain a conserved quantity when non-standard clock synchronizations are used.
The ability to use Newton's laws at low velocities was what motivated Einstein to define his method of clock synchronization.
Last edited: