Electric Dipole Potential Energy Calculation

Click For Summary
SUMMARY

The discussion focuses on calculating the potential energy of an electric dipole configuration consisting of two dipoles, each with charges of equal magnitude ##q## and opposite sign, separated by distance ##d##. The potential energy is derived using the formula ##W = Vq##, leading to the expression ##\frac{q^2}{\pi \epsilon_0}(-\frac{1}{r} + \frac{1}{\sqrt{r^2 + d^2}} - \frac{1}{d})##. When the condition ##d << r## is applied, the potential energy simplifies to ##-\frac{p^2}{4 \pi \epsilon_0 r^3}##, where ##p = qd## is the dipole moment. The discussion highlights the importance of avoiding double counting in potential energy calculations and suggests using a series expansion for small ##d##.

PREREQUISITES
  • Understanding of electric dipole moment and its formula ##p = qd##
  • Familiarity with the concept of potential energy in electrostatics
  • Knowledge of the formula for electric potential ##V = \frac{1}{4\pi \epsilon_0} \frac{q}{r}##
  • Ability to perform series expansions and approximations in physics
NEXT STEPS
  • Study the derivation of potential energy for multiple charge configurations
  • Learn about the implications of dipole interactions in electrostatics
  • Explore series expansion techniques for small parameter approximations
  • Investigate tools for LaTeX typesetting to improve mathematical expression clarity
USEFUL FOR

Students and professionals in physics, particularly those focusing on electrostatics, potential energy calculations, and dipole interactions. This discussion is beneficial for anyone looking to deepen their understanding of electric dipoles and their energy configurations.

arpon
Messages
234
Reaction score
16

Homework Statement


An electric dipole consists of two charges of equal magnitude ##q## and opposite sign, which are kept at a distance ##d## apart. The dipole moment is ##p= qd## .
Let us next place two such dipoles, placed at distance ##r## apart, as shown in the accompanying figure.
upload_2015-1-26_15-13-44.png

a) Assuming that the potential energy for the charges while at infinity is zero, find the exact potential energy of the configuration in terms of ##d, r, q ## and fundamental constants.

b)When ##d<<r## , approximate your previous result in terms of ##p, r ## and fundamental constants.

Homework Equations


##V = \frac {1}{4\pi \epsilon_0} \frac{q}{r}##
##W = Vq##

The Attempt at a Solution


For the positve charge of A dipole, I calculated the potential energy
##= +q \cdot \frac{1}{4\pi \epsilon _0} (\frac{-q}{r} + \frac {+q}{\sqrt{r^2 +d^2}} + \frac{-q}{d}) ##, because, ##W = Vq##
The potental energy for the other three charges are the same.
So, the potential energy of the configuration is
## = 4q \cdot \frac{1}{4\pi \epsilon _0} (\frac{-q}{r} + \frac {+q}{\sqrt{r^2 +d^2}} + \frac{-q}{d})##
##= \frac{q^2}{\pi \epsilon _0} (- \frac{1}{r} + \frac {1}{\sqrt{r^2 +d^2}} - \frac{1}{d})##;

Then , I can't find any way how to approximate the result when ##d << r##;
In this case, I substituted ##r^2## for ##r^2 + d^2## ;
So, two of the terms in bracket are cancelled.
Then I plugged in ## q = \frac{p}{d}## ;
But, still ##d## is there.
 
Physics news on Phys.org
arpon said:
For the positve charge of A dipole, I calculated the potential energy
##= +q \cdot \frac{1}{4\pi \epsilon _0} (\frac{-q}{r} + \frac {+q}{\sqrt{r^2 +d^2}} + \frac{-q}{d}) ##, because, ##W = Vq##
The potental energy for the other three charges are the same.

This is not correct. The potential energy (q1q2/4πεr) is for a pair of charges separated by a given distance. The way you are implementing it, you are double counting each pair and end up with double the potential energy.

arpon said:
So, the potential energy of the configuration is
## = 4q \cdot \frac{1}{4\pi \epsilon _0} (\frac{-q}{r} + \frac {+q}{\sqrt{r^2 +d^2}} + \frac{-q}{d})##
##= \frac{q^2}{\pi \epsilon _0} (- \frac{1}{r} + \frac {1}{\sqrt{r^2 +d^2}} - \frac{1}{d})##;

Then , I can't find any way how to approximate the result when ##d << r##;
In this case, I substituted ##r^2## for ##r^2 + d^2## ;
So, two of the terms in bracket are cancelled.
Then I plugged in ## q = \frac{p}{d}## ;
But, still ##d## is there.

The term proportional to 1/d in your parenthesis is the energy from the construction of the dipoles themselves. This is generally going to be much higher than the potential between the dipoles. Just substituting ##r^2## for ##r^2 + d^2## is going to make the potential between the dipoles disappear (as you noticed, the terms cancelled) and you will end up with an uninteresting result. Instead, you should make an expansion of the square root for small ##d##.
 
Orodruin said:
This is not correct. The potential energy (q1q2/4πεr) is for a pair of charges separated by a given distance. The way you are implementing it, you are double counting each pair and end up with double the potential energy.
I agree with you. So, the potential energy will be half of my calculation.
Orodruin said:
The term proportional to 1/d in your parenthesis is the energy from the construction of the dipoles themselves. This is generally going to be much higher than the potential between the dipoles. Just substituting r2r^2 for r2+d2r^2 + d^2 is going to make the potential between the dipoles disappear (as you noticed, the terms cancelled) and you will end up with an uninteresting result. Instead, you should make an expansion of the square root for small dd.
So, I need to leave the term ##\frac {1}{d}## ?
Then it becomes,
##\frac{1}{2} \cdot \frac{q^2}{\pi \epsilon _0}(- \frac{1}{r} + \frac{1}{\sqrt{d^2 + r^2}})##
##= \frac{q^2}{2 \pi \epsilon _0}(- \frac{1}{r} + \frac{1}{r} \cdot [1 + (\frac{d}{r})^2]^{- \frac{1}{2}})##
##= \frac{q^2}{2 \pi \epsilon _0} \frac{1}{r} (-1+ [1 - \frac{1}{2}(\frac{d}{r})^2] )##
##= \frac{q^2}{2 \pi \epsilon _0} \frac{1}{r} (- \frac{1}{2}(\frac{d}{r})^2))##
##= - \frac{p^2}{4 \pi \epsilon _0 r^3} ##
 
Last edited:
You have series expanded for r << d instead of r >> d. This
arpon said:
##= \frac{q^2}{2 \pi \epsilon _0}(- \frac{1}{r} + \frac{1}{r} \cdot [1 + (\frac{r}{d})^2]^{- \frac{1}{2}})##
should be
$$
\frac{q^2}{2 \pi \epsilon _0 r}\left(- 1 + \frac{1}{ \sqrt{1 + (\frac{d}{r})^2}}\right)
$$
 
Orodruin said:
You have series expanded for r << d instead of r >> d. This
It was a typo. Actually, typing in Latex is bothersome. Do you know about any easy-to-use tools for Latex typing?
 

Similar threads

Replies
1
Views
3K
  • · Replies 28 ·
Replies
28
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
1K
Replies
64
Views
5K