Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system
$$M(t) = M_{C} + m(t)$$
$$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$
$$P_i = Mv + u \, dm$$
$$P_f = (M + dm)(v + dv)$$
$$\Delta P = M \, dv + (v - u) \, dm$$
$$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$
$$F = u \frac{dm}{dt} = \rho A u^2$$
from conservation of momentum , the cannon recoils with the same force which it applies.
$$\quad \frac{dm}{dt}...