Electric Field of a quarter ring

  • Thread starter Thread starter Zayan
  • Start date Start date
  • Tags Tags
    Electric Field
AI Thread Summary
To calculate the electric field of a quarter ring, define the starting and ending angles counterclockwise from the positive x-axis. The components of the electric field are expressed as dE_x and dE_y, which depend on the angle θ. Integrating these components with varying limits shows that while the individual components E_x and E_y may differ, the overall magnitude and direction of the net electric field remain consistent. This highlights the importance of angle orientation in electric field calculations. The discussion emphasizes that despite different methods, the resultant electric field vector is invariant.
Zayan
Messages
47
Reaction score
4
Homework Statement
When calculating electric field of a quarter ring, putting limits from 0 to π/2 gives field lambda/4πER but when I put the limits as -theta1 to theta 2 taking theta from the middle symmetric axis,it gives a different value= lambda/2√2πER. Why does changing limits change the field?
Relevant Equations
dE=Integral kdq/r²
IMG20240624003952.jpg
 
Physics news on Phys.org
Charged arc.png
Define your starting and ending angles conventionally counterclockwise with respect to the positive x-axis as shown in the figure on the right.
Then $$\begin{align} & dE_x=\frac{k\lambda}{R}\cos\theta~d\theta \nonumber \\
& dE_y=\frac{k\lambda }{R}\sin\theta ~d\theta.\nonumber \end{align}$$ Integrate and set the limiting angles ##\theta_1## and ##\theta_2## to whatever you like. One expression does all cases.

For example, in your case I, ##\theta_1=\dfrac{\pi}{2}## and ##\theta_2=\pi.##
 
Last edited:
Zayan said:
Why does changing limits change the field?
It's not surprising that ##E_x## is different for your two methods. Likewise for ##E_y##.
But your two methods give the same result for the magnitude and direction of the net electric field vector.
 
kuruman said:
View attachment 347300Define your starting and ending angles conventionally with respect to the positive x-axis as shown in the figure on the right.
Then $$\begin{align} & dE_x=\frac{k\lambda}{R}\cos\theta~d\theta \nonumber \\
& dE_y=\frac{k\lambda }{R}\sin\theta ~d\theta.\nonumber \end{align}$$ Integrate and set the limiting angles ##\theta_1## and ##\theta_2## to whatever you like. One expression does all cases.

For example, in your case I, ##\theta_1=\dfrac{\pi}{2}## and ##\theta_2=\p

TSny said:
It's not surprising that ##E_x## is different for your two methods. Likewise for ##E_y##.
But your two methods give the same result for the magnitude and direction of the net electric field vector.
Yessir it was the Orientation problem
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top