Electrical potential of a conducting spherical shell

Click For Summary
SUMMARY

The discussion centers on calculating the electrical potential of a positive point charge \( q \) placed at the center of an ideal conducting spherical shell. The potential \( \phi(\vec{r}) \) is derived for three regions: \( r < a \), \( a < r < b \), and \( r > b \). The calculations utilize Gauss's law and the integral of the electric field \( E \) to determine the potential, leading to the final expressions \( \phi(r < a) = k \frac{q}{b + r_1} \) and \( \phi(r > b) = k \frac{q}{r_3} \). The discussion emphasizes the importance of ensuring continuity of potential at the boundaries of the regions.

PREREQUISITES
  • Understanding of Gauss's law in electrostatics
  • Familiarity with electric potential and electric field concepts
  • Ability to perform calculus, specifically integration
  • Knowledge of spherical coordinates and their applications in electromagnetism
NEXT STEPS
  • Study the derivation of electric potential using Gauss's law in different geometries
  • Learn about the behavior of electric fields in conductors and insulators
  • Explore the concept of electric potential energy in electrostatics
  • Investigate the implications of boundary conditions in electrostatic problems
USEFUL FOR

Students and professionals in physics, particularly those studying electromagnetism, electrical engineers, and anyone involved in theoretical physics or electrical engineering applications.

JulienB
Messages
408
Reaction score
12

Homework Statement



Hi everybody! I would like to clear up some doubts I have about my electromagnetism homework:

A positive point charge ##q## is placed in the center of an ideal conducting electrically neutral spherical shell, as shown in the attached picture.
a) Calculate the electrical potential ##\phi(\vec{r})## in all locations, that is ## r < a ##, ##a < r < b## and ##r > b##.
b) Sketch the result.

Homework Equations



Gauss's law, equation for electrical potential

The Attempt at a Solution



First I have been attaching a second picture showing how I understand the situation. I think the point charge at the center attracts at the inner border of the shell its negative equivalent of charge and repelling the same amount of positive charge to the outer border. Is that a correct assumption? If yes, I assume there is an electric field going from the point charge ##q## towards the inner border of the shell and from the outer border of the shell outwards (as indicated in the picture).
Now for the math:

- For the case ## r_1 < a ## :
##\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}##
##\iff E \int dA = \frac{q}{\varepsilon_0}##
## 4 E \pi r_1^2 = \frac{q}{\varepsilon_0}##
## E = k \frac{q}{r_1^2}##
##\implies \phi (\vec{r}) = - \int_{\infty}^{r_1} \vec{E} \cdot d\vec{s}##
## = kq \int_{\infty}^{r_1} \frac{-1}{r^2} ds##
## = \frac{kq}{r_1}##

Is that correct? I'm not sure about the boundaries of my integral, since the path goes through the shell then.

I will wait for an answer before posting the two other results :)

Thanks a lot in advance for your answers!Julien.
 

Attachments

  • Photo 16-05-16 14 20 06.jpeg
    Photo 16-05-16 14 20 06.jpeg
    23.6 KB · Views: 581
  • Photo 16-05-16 14 10 23.jpg
    Photo 16-05-16 14 10 23.jpg
    26.8 KB · Views: 533
Physics news on Phys.org
JulienB said:
First I have been attaching a second picture showing how I understand the situation. I think the point charge at the center attracts at the inner border of the shell its negative equivalent of charge and repelling the same amount of positive charge to the outer border. Is that a correct assumption? If yes, I assume there is an electric field going from the point charge qq towards the inner border of the shell and from the outer border of the shell outwards (as indicated in the picture).
Correct.
JulienB said:
Is that correct? I'm not sure about the boundaries of my integral, since the path goes through the shell then.
... where the electric field is different.
While the result is not directly wrong (the calculation is), using it would lead to a non-zero potential at infinity. Usually the potential is chosen to be zero at infinity. To fix that (later), you can add a constant to the potential, or start from the outside.
 
  • Like
Likes   Reactions: JulienB
@mfb Thanks for your answer, that is what I was fearing. I could also start by calculating the potential for ##r < b##, then ##a < r < b## and use those results with ##b## and ##a## instead of ##r## and add up the integrals? Like that:

##\phi(\vec{r}) = - (\int_{\infty}^{b} \vec{E_3} d\vec{s} + \int_{b}^{a} \vec{E_2} d\vec{s} + \int_{a}^{r_1} \vec{E_1} d\vec{s})##

That should work, right?Julien.
 
That works.
 
  • Like
Likes   Reactions: JulienB
@mfb Thanks a lot for your answer :) Then I publish my results starting from ##r_3## (for the case ##r > b##):

##\oint \vec{E_3} d\vec{A} = \frac{q}{\varepsilon_0}##
##\implies E_3 = k \frac{q}{r_3^2}##

##\implies \phi(\vec{r}) = - \int_{\infty}^{r_3} \vec{E_3} d\vec{s} = kq \int_{\infty}^{r_3} \frac{-1}{r^2} d\vec{s} = k \frac{q}{r_3}##

Then for the case ##a < r_2 < b##:

I would say ##E_2 = 0## because the negative charge of the inner surface of the conductive shell corresponds to the positive charge of the point mass at the center.

##\implies \phi(\vec{r}) = -\int_{\infty}^{b} \vec{E_3} d\vec{s} - \int_{b}^{r_2} \vec{E_2} d\vec{s} = k \frac{q}{b} - 0##

And finally for ##r_1 < a##:

##E = k \frac{q}{r_1^2}##

##\implies \phi(\vec{r}) = - \int_{\infty}^{b} \vec{E_3} d\vec{s} - \int_{b}^{a} \vec{E_2} d\vec{s} - \int_{a}^{r_1} \vec{E_1} d\vec{s}##
## = k \frac{q}{b + r_1}##

Does that make sense? Thanks a lot for all your help!Julien.
 
The last term is wrong, everything up to that is fine.
 
  • Like
Likes   Reactions: JulienB
@mfb oops yeah I tried to go too fast. Of course it is:

##\phi(\vec{r}) = k q (\frac{1}{b} + \frac{1}{r_1})##

Thanks a lot.

Julien.
 
Last edited:
JulienB said:
And finally for ##r_1 < a##:

##E = k \frac{q}{r_1^2}##

##\implies \phi(\vec{r}) = - \int_{\infty}^{b} \vec{E_3} d\vec{s} - \int_{b}^{a} \vec{E_2} d\vec{s} - \int_{a}^{r_1} \vec{E_1} d\vec{s}##
## = k \frac{q}{b + r_1}##

Does that make sense? Thanks a lot for all your help!Julien.
You can check the potential at r1=a. It should be the same as at r=b, Φ(b) = Φ(a) = kq/b.
 
  • Like
Likes   Reactions: JulienB
@ehild Thanks for your answer! Mm that's interesting, especially since it doesn't seem to work in my case:

##\phi(\vec{r} = \vec{a}) = kq ( \frac{1}{b} + \frac{1}{a})## if I take my last corrected equation

##\phi(\vec{r} = \vec{a}) = k \frac{q}{b}## with the equation for the potential in between the radii.
 
  • #10
Oh I did a big mistake in my last integral:

##\phi(\vec{r}) = -\int_{\infty}^{b} \vec{E_3} d\vec{s} -\int_{b}^{a} \vec{E_3} d\vec{s} - \int_{a}^{r_1} \vec{E_3} d\vec{s} = k \frac{q}{b} + kq \int_{a}^{r_1} \frac{- 1}{r^2} d\vec{s}##
## = k \frac{q}{b} + kq (\frac{1}{r_1} - \frac{1}{a})##

And then your method of checking the result works! Great!Julien.
 
  • Like
Likes   Reactions: mfb
  • #11
It is correct now. :oldsmile:
 
  • Like
Likes   Reactions: JulienB
  • #12
Great, thanks a lot everybody!Julien.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 5 ·
Replies
5
Views
671
  • · Replies 4 ·
Replies
4
Views
999
Replies
4
Views
1K
Replies
44
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K