- #1
WindScars
- 50
- 0
Im still on high school so I don't know where this question belongs to, I don't know even what is the exact subject of this question, so I would like you more experienced members to help me understand what exactly I am asking and where I can find information about it:
"In an empty universe, two particles, A and B, are instantly created at time=0s with an arbitrary position, mass, charge and velocity. They interact by electromagnetism and nothing else. How to find their positions in function of time?"
I have attempted solving it this way: their positions are the an integral of their velocities, right? Their velocities are an integral of their accelerations. Their accelerations are a function of their distances, that is a function of their positions. So in the end I had something like:
[itex]posA(t) = \int_0^t \int_0^t(\frac{k*qA*qB}{|posA(t)-posB(t)|²*mA}) dtdt[/itex]
Well its probably wrong and even if it were right Id have no idea of how to solve it. But you got the idea. Thoughts please.
"In an empty universe, two particles, A and B, are instantly created at time=0s with an arbitrary position, mass, charge and velocity. They interact by electromagnetism and nothing else. How to find their positions in function of time?"
I have attempted solving it this way: their positions are the an integral of their velocities, right? Their velocities are an integral of their accelerations. Their accelerations are a function of their distances, that is a function of their positions. So in the end I had something like:
[itex]posA(t) = \int_0^t \int_0^t(\frac{k*qA*qB}{|posA(t)-posB(t)|²*mA}) dtdt[/itex]
Well its probably wrong and even if it were right Id have no idea of how to solve it. But you got the idea. Thoughts please.