mcastillo356
Gold Member
- 658
- 361
- TL;DR
- Contradictory result
Faraday's law:
\epsilon=-N\dfrac{\Delta{\phi}}{\Delta{t}}=-N\dfrac{\Delta{(BA\cos{\theta})}}{\Delta{t}}=-N\dfrac{\Delta{(BA\cos{(\omega t)})}}{\Delta{t}}
Applying calculus
\epsilon=NBA\omega\cos{(\omega t)}
Shouldn't it be \epsilon=NBA\omega\sin{(\omega t)}, just if I apply limits?
Thanks
\epsilon=-N\dfrac{\Delta{\phi}}{\Delta{t}}=-N\dfrac{\Delta{(BA\cos{\theta})}}{\Delta{t}}=-N\dfrac{\Delta{(BA\cos{(\omega t)})}}{\Delta{t}}
Applying calculus
\epsilon=NBA\omega\cos{(\omega t)}
Shouldn't it be \epsilon=NBA\omega\sin{(\omega t)}, just if I apply limits?
Thanks